cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A022567 Expansion of Product_{m>=1} (1+x^m)^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 238, 319, 426, 562, 736, 960, 1242, 1598, 2048, 2608, 3306, 4175, 5248, 6570, 8198, 10190, 12622, 15589, 19190, 23552, 28830, 35190, 42842, 52034, 63040, 76198, 91904, 110604, 132832, 159216, 190464, 227417
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*, thus a(4)=9. - Jon Perry, Apr 04 2004
Number of partitions of n into odd parts, each part being of two kinds. E.g., a(3)=6 because we have 3, 3', 1+1+1, 1+1+1', 1+1'+1', 1'+1'+1'. - Emeric Deutsch, Mar 22 2005
Euler transform of period 2 sequence [2,0,2,0,...]. - Emeric Deutsch, Mar 22 2005
Equals A000041 convolved with A010054. - Gary W. Adamson, Jun 11 2009
The sum of the least gaps in all partitions of n. The "least gap" of a partition is the least positive integer that is not a part of the partition. Example: a(4) = 9 because the least gaps in [4], [3,1], [2,2], [2,1,1], and [1,1,1,1] are 1, 2, 1, 3, and 2, respectively. - Emeric Deutsch, May 18 2015
Number of 2-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The least gap is also known as the minimal excludant or mex; see Andrews and Newman. - George Beck, Dec 10 2020

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 14*x^5 + 22*x^6 + 32*x^7 + 46*x^8 + ...
G.f. = q + 2*q^13 + 3*q^25 + 6*q^37 + 9*q^49 + 14*q^61 + 22*q^73 + 32*q^85 + ...
		

References

  • P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Cf. A010054. - Gary W. Adamson, Jun 11 2009
Column k=2 of A286335.
Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
    
  • Maple
    A022567 := proc(n)
        local x,m;
        product((1+x^m)^2,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    (QPochhammer[-1, x]^2/4 + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
    nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j+1]] += poly[[j-k+1]], {j, nmax, k, -1}]; , {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^2, n))}; /* Michael Somos, Mar 21 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2, n))}; /* Michael Somos, Jun 03 2005 */
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 0, 2)
    a = EulerTransform(b)
    print([a(n) for n in range(45)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = p(n)+p(n-1)+p(n-3)+p(n-6)+...+p(n-k*(k+1)/2)+..., where p() is A000041(). E.g. a(8) = p(8)+p(7)+p(5)+p(2) = 22+15+7+2 = 46. - Vladeta Jovovic, Aug 09 2004
Expansion of q^(-1/12) * (eta(q^2) / eta(q))^2 in powers of q. - Michael Somos, Apr 27 2008
Expansion of chi(-q)^(-2) in powers of q where chi() is a Ramanujan theta function. - Michael Somos, Apr 27 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A022597. - Michael Somos, Apr 27 2008
G.f.: Product_{k>0} (1 + x^k)^2.
Convolution square of A000009. Convolution inverse of A022597. - Michael Somos, Apr 27 2008
Parity result: a(n) is even except when n is twice a generalized pentagonal number (i.e., of the form 2*A001318(m) for some m). - Peter Bala, Mar 19 2009
a(n) ~ exp(Pi * sqrt(2*n/3)) / (4 * 6^(1/4) * n^(3/4)) * (1 + (Pi/(12*sqrt(6)) - 3*sqrt(3/2)/(8*Pi)) / sqrt(n) + (Pi^2/1728 - 45/(256*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Mar 05 2015, extended Jan 22 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A286352 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 1, -1, 0, 1, -4, 3, -2, 1, 0, 1, -5, 6, -4, 4, -1, 0, 1, -6, 10, -8, 9, -4, 1, 0, 1, -7, 15, -15, 17, -12, 5, -1, 0, 1, -8, 21, -26, 30, -28, 15, -6, 2, 0, 1, -9, 28, -42, 51, -56, 38, -21, 9, -2, 0, 1, -10, 36, -64, 84
Offset: 0

Views

Author

Seiichi Manyama, May 08 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1,   1, ...
   0, -1, -2, -3, -4,  -5, ...
   0,  0,  1,  3,  6,  10, ...
   0, -1, -2, -4, -8, -15, ...
   0,  1,  4,  9, 17,  30, ...
		

Crossrefs

Columns k=0-32 give: A000007, A081362, A022597-A022627.
Main diagonal gives A255526.
Antidiagonal sums give A299208.
Cf. A286335.

Formula

G.f. of column k: Product_{j>=1} 1/(1 + x^j)^k.

A338463 Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 5, 8, 9, 12, 15, 20, 23, 28, 36, 44, 52, 62, 76, 90, 106, 124, 149, 176, 203, 236, 279, 324, 372, 430, 499, 576, 657, 752, 867, 992, 1124, 1280, 1463, 1662, 1876, 2124, 2410, 2722, 3061, 3446, 3889, 4374, 4896, 5490, 6166, 6900, 7700, 8600
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • SageMath
    m=80
    def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2
    def A338463_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    a=A338463_list(m); a[2:] # G. C. Greubel, Sep 07 2023

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^2.
a(n) = Sum_{k=1..n-1} A000700(k) * A000700(n-k).
a(n) = A073252(n) - 2 * A000700(n) for n > 0.
a(n) = [x^n]( (2/QPochhammer(-1,-x) - 1)^2 ). - G. C. Greubel, Sep 07 2023

A073252 Coefficients of replicable function number "48g".

Original entry on oeis.org

1, 2, 1, 2, 4, 4, 5, 6, 9, 12, 13, 16, 21, 26, 29, 36, 46, 54, 62, 74, 90, 106, 122, 142, 171, 200, 227, 264, 311, 358, 408, 470, 545, 626, 709, 810, 933, 1062, 1198, 1362, 1555, 1760, 1980, 2238, 2536, 2858, 3205, 3602, 4063, 4560, 5092, 5704, 6400, 7150, 7966
Offset: 0

Views

Author

Michael Somos, Jul 22 2002

Keywords

Comments

Old name was: McKay-Thompson series of class 48g for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Combinatorial interpretation of sequence: [ X1, X2 ] = 2 strictly increasing sequences (possibly null) of odd positive integers; a(n) = #pairs with sum of entries = n.

Examples

			a(4) = 4: [ (1),(3) ],[ (3),(1) ],[ (),(1,3) ],[ (1,3),() ]
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 9*x^8 + 12*x^9 + ...
G.f. = 1/q + 2*q^11 + q^23 + 2*q^35 + 4*q^47 + 4*q^59 + 5*q^71 + 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ( (&*[1 + x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
    QP = QPochhammer; s = (QP[q^2]^2 / (QP[q] * QP[q^4]))^2 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2, {x, 0, n}]; (* Michael Somos, Nov 03 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( i=1, (1+n)\2, 1 + x^(2*i - 1), 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( i=1, n, 1 + (-x)^i, 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) / eta(x^4 + A))^2, n))};
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A073252_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (f(x^2)^2/(f(x)*f(x^4)))^2 ).list()
    A073252_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: 1 / (Prod_{k>0} 1 + (-x)^k)^2 = (Prod_{k>0} 1 + x^(2*k - 1))^2.
Expansion of q^(1/12) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^2 in powers of q.
Expansion of chi(q)^2 = phi(q) / f(-q^2) = f(q) / psi(-q) = (phi(q) / f(q))^2 = (psi(q) / f(-q^4))^2 = (f(-q^2) / psi(-q))^2 = (phi(-q^2) / f(-q))^2 = (f(q) / f(-q^2))^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [2, -2, 2, 0, ...].
Equals the convolution square of A000700.
a(n) = (-1)^n * A022597(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
a(2*n) = A226622(n). a(2*n + 1) = 2 * A226635(n). - Michael Somos, Nov 03 2019

Extensions

Comments from Len Smiley.
New name from Michael Somos, Nov 03 2019

A339717 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^2.

Original entry on oeis.org

1, -2, -2, 1, -2, 2, -2, -2, 1, 2, -2, 0, -2, 2, 2, 4, -2, 0, -2, 0, 2, 2, -2, 4, 1, 2, -2, 0, -2, 2, -2, -4, 2, 2, 2, 2, -2, 2, 2, 4, -2, 2, -2, 0, 0, 2, -2, -4, 1, 0, 2, 0, -2, 4, 2, 4, 2, 2, -2, 0, -2, 2, 0, 5, 2, 2, -2, 0, 2, 2, -2, -4, -2, 2, 0, 0, 2, 2, -2, -4
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A328706(n/d) * a(d).
a(n) = Sum_{d|n} A316441(n/d) * A316441(d).
a(p^k) = A022597(k) for prime p.

A022599 Expansion of Product_{m>=1} (1+q^m)^(-4).

Original entry on oeis.org

1, -4, 6, -8, 17, -28, 38, -56, 84, -124, 172, -232, 325, -448, 594, -784, 1049, -1388, 1796, -2320, 3005, -3864, 4912, -6216, 7877, -9940, 12430, -15488, 19309, -23972, 29580, -36408, 44766, -54876, 66978, -81536, 99150, -120272, 145374, -175344, 211242
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
McKay-Thompson series of class 12J for the Monster group.

Examples

			G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 17*x^4 - 28*x^5 + 38*x^6 - 56*x^7 + ...
T12J = 1/q - 4*q^5 + 6*q^11 - 8*q^17 + 17*q^23 - 28*q^29 + 38*q^35 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^4.

Crossrefs

Column k=4 of A286352.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          -4*irem(d, 2)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 02 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^4, {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^4, n))};

Formula

Expansion of chi(-x)^4 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/6) * (eta(q) / eta(q^2))^4 in powers of q.
Euler transform of period 2 sequence [ -4, 0, ...]. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = (A(q^6) / q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u * (16 + u * v) - v^2. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = A(q^6) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 4 * v * (v + u^2) - w^2 * (v - u^2). - Michael Somos, Apr 26 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022569.
Convolution inverse is A022569. Convolution square of A022597. Convolution square is A007259.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2 * 6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A226635 Expansion of psi(x^4) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 27, 37, 53, 71, 100, 132, 179, 235, 313, 405, 531, 681, 880, 1119, 1429, 1801, 2280, 2852, 3575, 4444, 5529, 6827, 8436, 10357, 12716, 15530, 18958, 23036, 27978, 33839, 40896, 49254, 59265, 71083, 85180, 101781, 121494, 144659
Offset: 0

Views

Author

Michael Somos, Aug 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 13*x^6 + 18*x^7 + 27*x^8 + 37*x^9 + ...
G.f. = q^11 + q^35 + 2*q^59 + 3*q^83 + 6*q^107 + 8*q^131 + 13*q^155 + 18*q^179 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^2] / (2 q^(1/2) QPochhammer[ q]), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))};

Formula

Expansion of q^(-11/24) * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [1, 1, 1, 2, 1, 1, 1, 0, ...].
G.f.: (Sum_{k>=1} x^(2*k*(k-1))) / (Product_{k>=1} (1 - x^k)).
2 * a(n) = A073252(2*n + 1). -2 * a(n) = A022597(2*n + 1).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(13/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Expansion of (chi(q)^2 - chi(-q)^2)/(4*q) in powers of q^2 where chi() is a Ramanujan theta function. - Michael Somos, Nov 02 2019

A226622 Expansion of phi(x^2) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 4, 5, 9, 13, 21, 29, 46, 62, 90, 122, 171, 227, 311, 408, 545, 709, 933, 1198, 1555, 1980, 2536, 3205, 4063, 5092, 6400, 7966, 9928, 12281, 15198, 18684, 22979, 28097, 34346, 41789, 50813, 61527, 74453, 89757, 108114, 129809, 155704, 186221, 222503
Offset: 0

Views

Author

Michael Somos, Aug 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 13*x^5 + 21*x^6 + 29*x^7 + 46*x^8 + 62*x^9 + ...
1/q + q^23 + 4*q^47 + 5*q^71 + 9*q^95 + 13*q^119 + 21*q^143 + 29*q^167 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / QPochhammer[ q], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(1/24) * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 3, 1, -2, 1, 3, 1, 0, ...].
G.f.: (Sum_{k in Z} x^(2*k^2)) / (Product_{k>0} (1 - x^k)).
a(n) = A022597(2*n) = A073252(2*n).
G.f. A(x) satisfies A(x^2) = ( chi(x)^2 + chi(-x)^2 )/2, where chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. Cf. A226635. - Peter Bala, Sep 29 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2025

A382342 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of two kinds.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 2, 7, 6, 5, 0, 2, 8, 12, 8, 6, 0, 2, 11, 18, 17, 10, 7, 0, 2, 12, 26, 28, 22, 12, 8, 0, 2, 15, 34, 46, 38, 27, 14, 9, 0, 2, 16, 46, 64, 66, 48, 32, 16, 10, 0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11, 0, 2, 20, 70, 124, 152, 136, 106, 68, 42, 20, 12
Offset: 0

Views

Author

Peter Dolland, Mar 27 2025

Keywords

Examples

			Triangle starts:
 0 : [1]
 1 : [0, 2]
 2 : [0, 2,  3]
 3 : [0, 2,  4,  4]
 4 : [0, 2,  7,  6,  5]
 5 : [0, 2,  8, 12,  8,   6]
 6 : [0, 2, 11, 18, 17,  10,  7]
 7 : [0, 2, 12, 26, 28,  22, 12,  8]
 8 : [0, 2, 15, 34, 46,  38, 27, 14,  9]
 9 : [0, 2, 16, 46, 64,  66, 48, 32, 16, 10]
10 : [0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11]
  ...
		

Crossrefs

Row sums give A000712.
Cf. A008284 (1-kind case), A022597, A381895, A382345.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=0..n), n=0..11);  # Alois P. Heinz, Mar 27 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]];
    T[n_, k_] := Coefficient[b[n, n], x, k];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
  • Python
    from sympy.utilities.iterables import partitions
    def t_row( n):
        if n == 0 : return [1]
        t = list( [0] * n)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= 1 + p[k]
            if s > 0 :
                t[s - 1] += fact
        return [0] + t

Formula

T(n,n) = n + 1.
T(n,1) = 2 for n >= 1.
T(n,k) = A381895(n,k) - A381895(n,k-1) for 1 <= k <= n.
Sum_{k=0..n} (-1)^k * T(n,k) = A022597(n). - Alois P. Heinz, Mar 27 2025

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Showing 1-10 of 13 results. Next