A022567
Expansion of Product_{m>=1} (1+x^m)^2.
Original entry on oeis.org
1, 2, 3, 6, 9, 14, 22, 32, 46, 66, 93, 128, 176, 238, 319, 426, 562, 736, 960, 1242, 1598, 2048, 2608, 3306, 4175, 5248, 6570, 8198, 10190, 12622, 15589, 19190, 23552, 28830, 35190, 42842, 52034, 63040, 76198, 91904, 110604, 132832, 159216, 190464, 227417
Offset: 0
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 9*x^4 + 14*x^5 + 22*x^6 + 32*x^7 + 46*x^8 + ...
G.f. = q + 2*q^13 + 3*q^25 + 6*q^37 + 9*q^49 + 14*q^61 + 22*q^73 + 32*q^85 + ...
- P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
- Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- George E. Andrews, David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- Cristina Ballantine, Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
- Helena Bergold, Lukas Egeling, and Hung. P. Hoang, Signotopes with few plus signs, arXiv:2411.19208 [math.CO], 2024. See p. 14.
- J. Currie, N. Rampersad, Binary words avoiding xx^Rx and strongly unimodal sequences, JIS 18 (2015) #15.10.3.
- Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
- Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, arXiv preprint arXiv:1110.5103 [math.CO], 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 852
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75. See q(n)'.
- Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
- Michael Somos, Introduction to Ramanujan theta functions
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
-
Coefficients(&*[(1+x^m)^2:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
-
A022567 := proc(n)
local x,m;
product((1+x^m)^2,m=1..n) ;
expand(%) ;
coeff(%,x,n) ;
end proc: # R. J. Mathar, Jun 18 2016
-
a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^-2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + q^k, {k, n}]^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
(QPochhammer[-1, x]^2/4 + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
nmax = 50; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j+1]] += poly[[j-k+1]], {j, nmax, k, -1}]; , {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
-
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^2, n))}; /* Michael Somos, Mar 21 2004 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A))^2, n))}; /* Michael Somos, Jun 03 2005 */
-
# uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 0, 2)
a = EulerTransform(b)
print([a(n) for n in range(45)]) # Peter Luschny, Nov 11 2020
A286352
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + x^j)^k.
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 1, -1, 0, 1, -4, 3, -2, 1, 0, 1, -5, 6, -4, 4, -1, 0, 1, -6, 10, -8, 9, -4, 1, 0, 1, -7, 15, -15, 17, -12, 5, -1, 0, 1, -8, 21, -26, 30, -28, 15, -6, 2, 0, 1, -9, 28, -42, 51, -56, 38, -21, 9, -2, 0, 1, -10, 36, -64, 84
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, ...
0, 0, 1, 3, 6, 10, ...
0, -1, -2, -4, -8, -15, ...
0, 1, 4, 9, 17, 30, ...
A338463
Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2.
Original entry on oeis.org
1, 0, 2, 2, 3, 4, 5, 8, 9, 12, 15, 20, 23, 28, 36, 44, 52, 62, 76, 90, 106, 124, 149, 176, 203, 236, 279, 324, 372, 430, 499, 576, 657, 752, 867, 992, 1124, 1280, 1463, 1662, 1876, 2124, 2410, 2722, 3061, 3446, 3889, 4374, 4896, 5490, 6166, 6900, 7700, 8600
Offset: 2
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
-
nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
-
m=80
def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2
def A338463_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
a=A338463_list(m); a[2:] # G. C. Greubel, Sep 07 2023
A073252
Coefficients of replicable function number "48g".
Original entry on oeis.org
1, 2, 1, 2, 4, 4, 5, 6, 9, 12, 13, 16, 21, 26, 29, 36, 46, 54, 62, 74, 90, 106, 122, 142, 171, 200, 227, 264, 311, 358, 408, 470, 545, 626, 709, 810, 933, 1062, 1198, 1362, 1555, 1760, 1980, 2238, 2536, 2858, 3205, 3602, 4063, 4560, 5092, 5704, 6400, 7150, 7966
Offset: 0
a(4) = 4: [ (1),(3) ],[ (3),(1) ],[ (),(1,3) ],[ (1,3),() ]
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 9*x^8 + 12*x^9 + ...
G.f. = 1/q + 2*q^11 + q^23 + 2*q^35 + 4*q^47 + 4*q^59 + 5*q^71 + 6*q^83 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- D. Foata and G.-N. Han, Jacobi and Watson Identities Combinatorially Revisited
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ( (&*[1 + x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
-
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
QP = QPochhammer; s = (QP[q^2]^2 / (QP[q] * QP[q^4]))^2 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2, {x, 0, n}]; (* Michael Somos, Nov 03 2019 *)
-
{a(n) = if( n<0, 0, polcoeff( prod( i=1, (1+n)\2, 1 + x^(2*i - 1), 1 + x * O(x^n))^2, n))};
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod( i=1, n, 1 + (-x)^i, 1 + x * O(x^n))^2, n))};
-
{a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) / eta(x^4 + A))^2, n))};
-
from sage.modular.etaproducts import qexp_eta
m=80
def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
def A073252_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (f(x^2)^2/(f(x)*f(x^4)))^2 ).list()
A073252_list(m) # G. C. Greubel, Sep 07 2023
A339717
Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^2.
Original entry on oeis.org
1, -2, -2, 1, -2, 2, -2, -2, 1, 2, -2, 0, -2, 2, 2, 4, -2, 0, -2, 0, 2, 2, -2, 4, 1, 2, -2, 0, -2, 2, -2, -4, 2, 2, 2, 2, -2, 2, 2, 4, -2, 2, -2, 0, 0, 2, -2, -4, 1, 0, 2, 0, -2, 4, 2, 4, 2, 2, -2, 0, -2, 2, 0, 5, 2, 2, -2, 0, 2, 2, -2, -4, -2, 2, 0, 0, 2, 2, -2, -4
Offset: 1
A022599
Expansion of Product_{m>=1} (1+q^m)^(-4).
Original entry on oeis.org
1, -4, 6, -8, 17, -28, 38, -56, 84, -124, 172, -232, 325, -448, 594, -784, 1049, -1388, 1796, -2320, 3005, -3864, 4912, -6216, 7877, -9940, 12430, -15488, 19309, -23972, 29580, -36408, 44766, -54876, 66978, -81536, 99150, -120272, 145374, -175344, 211242
Offset: 0
G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 17*x^4 - 28*x^5 + 38*x^6 - 56*x^7 + ...
T12J = 1/q - 4*q^5 + 6*q^11 - 8*q^17 + 17*q^23 - 28*q^29 + 38*q^35 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^4.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 13.
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
-4*irem(d, 2)*d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2014
-
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^4, {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^4, n))};
A226635
Expansion of psi(x^4) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 13, 18, 27, 37, 53, 71, 100, 132, 179, 235, 313, 405, 531, 681, 880, 1119, 1429, 1801, 2280, 2852, 3575, 4444, 5529, 6827, 8436, 10357, 12716, 15530, 18958, 23036, 27978, 33839, 40896, 49254, 59265, 71083, 85180, 101781, 121494, 144659
Offset: 0
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 13*x^6 + 18*x^7 + 27*x^8 + 37*x^9 + ...
G.f. = q^11 + q^35 + 2*q^59 + 3*q^83 + 6*q^107 + 8*q^131 + 13*q^155 + 18*q^179 + ...
-
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^2] / (2 q^(1/2) QPochhammer[ q]), {q, 0, n}];
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))};
A226622
Expansion of phi(x^2) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 1, 4, 5, 9, 13, 21, 29, 46, 62, 90, 122, 171, 227, 311, 408, 545, 709, 933, 1198, 1555, 1980, 2536, 3205, 4063, 5092, 6400, 7966, 9928, 12281, 15198, 18684, 22979, 28097, 34346, 41789, 50813, 61527, 74453, 89757, 108114, 129809, 155704, 186221, 222503
Offset: 0
1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 13*x^5 + 21*x^6 + 29*x^7 + 46*x^8 + 62*x^9 + ...
1/q + q^23 + 4*q^47 + 5*q^71 + 9*q^95 + 13*q^119 + 21*q^143 + 29*q^167 + ...
-
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / QPochhammer[ q], {q, 0, n}]
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}
A382342
Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of two kinds.
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 2, 7, 6, 5, 0, 2, 8, 12, 8, 6, 0, 2, 11, 18, 17, 10, 7, 0, 2, 12, 26, 28, 22, 12, 8, 0, 2, 15, 34, 46, 38, 27, 14, 9, 0, 2, 16, 46, 64, 66, 48, 32, 16, 10, 0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11, 0, 2, 20, 70, 124, 152, 136, 106, 68, 42, 20, 12
Offset: 0
Triangle starts:
0 : [1]
1 : [0, 2]
2 : [0, 2, 3]
3 : [0, 2, 4, 4]
4 : [0, 2, 7, 6, 5]
5 : [0, 2, 8, 12, 8, 6]
6 : [0, 2, 11, 18, 17, 10, 7]
7 : [0, 2, 12, 26, 28, 22, 12, 8]
8 : [0, 2, 15, 34, 46, 38, 27, 14, 9]
9 : [0, 2, 16, 46, 64, 66, 48, 32, 16, 10]
10 : [0, 2, 19, 56, 94, 100, 86, 58, 37, 18, 11]
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..11); # Alois P. Heinz, Mar 27 2025
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
-
from sympy.utilities.iterables import partitions
def t_row( n):
if n == 0 : return [1]
t = list( [0] * n)
for p in partitions( n):
fact = 1
s = 0
for k in p :
s += p[k]
fact *= 1 + p[k]
if s > 0 :
t[s - 1] += fact
return [0] + t
A022600
Expansion of Product_{m>=1} (1+q^m)^(-5).
Original entry on oeis.org
1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0
Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k:
A022627 (k=-32),
A022626 (k=-31),
A022625 (k=-30),
A022624 (k=-29),
A022623 (k=-28),
A022622 (k=-27),
A022621 (k=-26),
A022620 (k=-25),
A007191 (k=-24),
A022618 (k=-23),
A022617 (k=-22),
A022616 (k=-21),
A022615 (k=-20),
A022614 (k=-19),
A022613 (k=-18),
A022612 (k=-17),
A022611 (k=-16),
A022610 (k=-15),
A022609 (k=-14),
A022608 (k=-13),
A007249 (k=-12),
A022606 (k=-11),
A022605 (k=-10),
A022604 (k=-9),
A007259 (k=-8),
A022602 (k=-7),
A022601 (k=-6), this sequence (k=-5),
A022599 (k=-4),
A022598 (k=-3),
A022597 (k=-2),
A081362 (k=-1),
A000009 (k=1),
A022567 (k=2),
A022568 (k=3),
A022569 (k=4),
A022570 (k=5),
A022571 (k=6),
A022572 (k=7),
A022573 (k=8),
A022574 (k=9),
A022575 (k=10),
A022576 (k=11),
A022577 (k=12),
A022578 (k=13),
A022579 (k=14),
A022580 (k=15),
A022581 (k=16),
A022582 (k=17),
A022583 (k=18),
A022584 (k=19),
A022585 (k=20),
A022586 (k=21),
A022587 (k=22),
A022588 (k=23),
A014103 (k=24),
A022589 (k=25),
A022590 (k=26),
A022591 (k=27),
A022592 (k=28),
A022593 (k=29),
A022594 (k=30),
A022595 (k=31),
A022596 (k=32),
A025233 (k=48).
-
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
-
x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017
Showing 1-10 of 13 results.
Comments