cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069910 Expansion of Product_{i in A069908} 1/(1 - x^i).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 23, 26, 33, 37, 46, 52, 63, 72, 87, 98, 117, 133, 157, 178, 209, 236, 276, 312, 361, 408, 471, 530, 609, 686, 784, 881, 1004, 1126, 1279, 1433, 1621, 1814, 2048, 2286, 2574, 2871, 3223, 3590, 4022, 4472, 5000
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Number 39 of the 130 identities listed in Slater 1952.
Number of partitions of 2*n into distinct odd parts. - Vladeta Jovovic, May 08 2003

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ...
G.f. = q^-1 + q^95 + q^143 + 2*q^191 + 2*q^239 + 3*q^287 + 3*q^335 + ...
		

References

  • M. D. Hirschhorn, The Power of q, Springer, 2017. Chapter 19, Exercises p. 173.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0$2, 1$4, 0$5, 1$4, 0][irem(d, 16)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    max = 56; p = Product[1/(1-x^i), {i, Select[Range[max], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&]}]; s = Series[p, {x, 0, max}]; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Apr 09 2014 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(8*k-1))*(1-x^(8*k-7))*(1-x^(8*k))*(1-x^(16*k-6))*(1-x^(16*k-10))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }[[ Mod[k, 16] + 1]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 14 2016 *)
  • PARI
    {a(n) = my(A); if( n<0,0, n=2*n; A = x * O(x^n); polcoeff( eta(-x + A) / eta(x^2 + A), n))}; /* Michael Somos, Apr 11 2004 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=0, S, q^(2*n^2) / prod(k=1, 2*n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0][k%16 + 1]), n))}; /* Michael Somos, Apr 14 2016 */

Formula

Euler transform of period 16 sequence [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: Sum_{n>=0} q^(2*n^2) / Product_{k=1..2*n} (1 - q^k). - Joerg Arndt, Apr 01 2014
a(n) ~ exp(sqrt(n/3)*Pi) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
Expansion of f(x^3, x^5) / f(-x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Apr 14 2016
a(n) = A000700(2*n).
a(n) = A027356(4n+1,2n+1). - Alois P. Heinz, Oct 28 2019
From Peter Bala, Feb 08 2021: (Start)
G.f.: A(x) = Product_{n >= 1} (1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)).
The 2 X 2 matrix Product_{k >= 0} [1, x^(2*k+1); x^(2*k+1), 1] = [A(x^2), x*B(x^2); x*B(x)^2, A(x^2)], where B(x) is the g.f. of A069911.
A(x^2) + x*B(x^2) = A^2(-x) + x*B^2(-x) = Product_{k >= 0} 1 + x^(2*k+1), the g.f. of A000700.
A^2(x) + x*B^2(x) is the g.f. of A226622.
(A^2(x) + x*B^2(x))/(A^2(x) - x*B^2(x)) is the g.f. of A208850.
A^4(sqrt(x)) - x*B^4(sqrt(x)) is the g.f. of A029552.
A(x)*B(x) is the g.f. of A226635; A(-x)/B(-x) is the g.f. of A111374; B(-x)/A(-x) is the g.f. of A092869. (End)

A073252 Coefficients of replicable function number "48g".

Original entry on oeis.org

1, 2, 1, 2, 4, 4, 5, 6, 9, 12, 13, 16, 21, 26, 29, 36, 46, 54, 62, 74, 90, 106, 122, 142, 171, 200, 227, 264, 311, 358, 408, 470, 545, 626, 709, 810, 933, 1062, 1198, 1362, 1555, 1760, 1980, 2238, 2536, 2858, 3205, 3602, 4063, 4560, 5092, 5704, 6400, 7150, 7966
Offset: 0

Views

Author

Michael Somos, Jul 22 2002

Keywords

Comments

Old name was: McKay-Thompson series of class 48g for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Combinatorial interpretation of sequence: [ X1, X2 ] = 2 strictly increasing sequences (possibly null) of odd positive integers; a(n) = #pairs with sum of entries = n.

Examples

			a(4) = 4: [ (1),(3) ],[ (3),(1) ],[ (),(1,3) ],[ (1,3),() ]
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 9*x^8 + 12*x^9 + ...
G.f. = 1/q + 2*q^11 + q^23 + 2*q^35 + 4*q^47 + 4*q^59 + 5*q^71 + 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ( (&*[1 + x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
    QP = QPochhammer; s = (QP[q^2]^2 / (QP[q] * QP[q^4]))^2 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2, {x, 0, n}]; (* Michael Somos, Nov 03 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( i=1, (1+n)\2, 1 + x^(2*i - 1), 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( i=1, n, 1 + (-x)^i, 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) / eta(x^4 + A))^2, n))};
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A073252_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (f(x^2)^2/(f(x)*f(x^4)))^2 ).list()
    A073252_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: 1 / (Prod_{k>0} 1 + (-x)^k)^2 = (Prod_{k>0} 1 + x^(2*k - 1))^2.
Expansion of q^(1/12) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^2 in powers of q.
Expansion of chi(q)^2 = phi(q) / f(-q^2) = f(q) / psi(-q) = (phi(q) / f(q))^2 = (psi(q) / f(-q^4))^2 = (f(-q^2) / psi(-q))^2 = (phi(-q^2) / f(-q))^2 = (f(q) / f(-q^2))^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [2, -2, 2, 0, ...].
Equals the convolution square of A000700.
a(n) = (-1)^n * A022597(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
a(2*n) = A226622(n). a(2*n + 1) = 2 * A226635(n). - Michael Somos, Nov 03 2019

Extensions

Comments from Len Smiley.
New name from Michael Somos, Nov 03 2019

A381899 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Geoffrey Critzer, Mar 09 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A132186(n).
Sum_{k>=0} T(n,k)*3^k = A053846(n).
Sum_{k>=0} T(n,k)*q^k = the number of idempotent n X n matrices over GF(q).
It appears that if n is even the n-th row converges to 2,0,0,...,21,13,9,5,4,1,1 which is A226622 reversed, and if n is odd the sequence is twice A226635.
From Alois P. Heinz, Mar 09 2025: (Start)
Sum_{k>=0} k * T(n,k) = 3*A001788(n-1) for n>=1.
Sum_{k>=0} (-1)^k * T(n,k) = A060546(n). (End)

Examples

			Triangle T(n,k) begins:
  1;
  2;
  2, 1, 1;
  2, 0, 2, 2, 2;
  2, 0, 0, 2, 3, 3, 4, 1, 1;
  2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
  ...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
		

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
         `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
             expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 09 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^2 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).

A366104 G.f. ( Chi(sqrt(x))^4 + Chi(-sqrt(x))^4 )/2, where Chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700.

Original entry on oeis.org

1, 6, 17, 38, 84, 172, 325, 594, 1049, 1796, 3005, 4912, 7877, 12430, 19309, 29580, 44766, 66978, 99150, 145374, 211242, 304382, 435194, 617674, 870651, 1219352, 1697283, 2348888, 3232919, 4426546, 6030872, 8177986, 11039633, 14838518, 19862613, 26482878, 35175989, 46552818, 61393694
Offset: 0

Views

Author

Peter Bala, Sep 29 2023

Keywords

Comments

Compare with A224916 with g.f. ( Chi(sqrt(x))^4 - Chi(-sqrt(x))^4 )/(8*sqrt(x)),
A069910 with g.f. ( Chi(sqrt(x)) + Chi(-sqrt(x)) )/2,
A069911 with g.f. ( Chi(sqrt(x)) - Chi(-sqrt(x)) )/2,
A226622 with g.f. ( Chi(sqrt(x))^2 + Chi(-sqrt(x))^2 )/2 and
A226635 with g.f. ( Chi(sqrt(x))^2 - Chi(-sqrt(x))^2 )/(4*sqrt(x)),
Jacobi's "aequatio identica satis abstrusa" is the identity ( Chi(sqrt(x))^8 - Chi(-sqrt(x))^8 )/(16*sqrt(x)) = Product_{k >= 1} (1 + x^k)^8.

Crossrefs

Programs

  • Maple
    with(QDifferenceEquations):
     seq(coeff((1/2)*expand(QPochhammer(-q,q^2,40)^4 + QPochhammer(q,q^2,40)^4), q, 2*n), n = 0..40);
    #alternative program
    seq(coeff(expand(QPochhammer(-q^2, q^2, 20)^2 * QPochhammer(-q, q^2, 20)^6), q, n), n = 0..40);
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k))^2 * (1 + x^(2*k-1))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 29 2025 *)

Formula

G.f.: Product_{k >= 1} (1 + x^(2*k))^2*(1 + x^(2*k-1))^6.
G.f.: x^(1/12) * eta(x^2)^10 * eta(x^4)^2 / ( eta(x) * eta(x^4) )^6.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2025
Showing 1-4 of 4 results.