cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A022597 Expansion of Product_{m >= 1} (1 + q^m)^(-2).

Original entry on oeis.org

1, -2, 1, -2, 4, -4, 5, -6, 9, -12, 13, -16, 21, -26, 29, -36, 46, -54, 62, -74, 90, -106, 122, -142, 171, -200, 227, -264, 311, -358, 408, -470, 545, -626, 709, -810, 933, -1062, 1198, -1362, 1555, -1760, 1980, -2238, 2536, -2858, 3205, -3602, 4063, -4560, 5092, -5704, 6400, -7150, 7966
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
McKay-Thompson series of class 24J for the Monster group.

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Cf. A089814 (expansion of Product_{k>=1}(1-q^(10k-5))^2).
Column k=2 of A286352.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */

Formula

Expansion of q^(1/12) * (eta(q) / eta(q^2))^2 in powers of q.
Euler transform of period 2 sequence [ -2, 0, ...]. - Michael Somos, Sep 10 2005
Expansion of chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022567.
G.f.: Product_{k>0} (1 + x^k)^-2.
Convolution square of A081362. Convolution inverse of A022567.
a(n) = (-1)^n * A073252(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A338463 Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 5, 8, 9, 12, 15, 20, 23, 28, 36, 44, 52, 62, 76, 90, 106, 124, 149, 176, 203, 236, 279, 324, 372, 430, 499, 576, 657, 752, 867, 992, 1124, 1280, 1463, 1662, 1876, 2124, 2410, 2722, 3061, 3446, 3889, 4374, 4896, 5490, 6166, 6900, 7700, 8600
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • SageMath
    m=80
    def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2
    def A338463_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    a=A338463_list(m); a[2:] # G. C. Greubel, Sep 07 2023

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^2.
a(n) = Sum_{k=1..n-1} A000700(k) * A000700(n-k).
a(n) = A073252(n) - 2 * A000700(n) for n > 0.
a(n) = [x^n]( (2/QPochhammer(-1,-x) - 1)^2 ). - G. C. Greubel, Sep 07 2023

A226635 Expansion of psi(x^4) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 27, 37, 53, 71, 100, 132, 179, 235, 313, 405, 531, 681, 880, 1119, 1429, 1801, 2280, 2852, 3575, 4444, 5529, 6827, 8436, 10357, 12716, 15530, 18958, 23036, 27978, 33839, 40896, 49254, 59265, 71083, 85180, 101781, 121494, 144659
Offset: 0

Views

Author

Michael Somos, Aug 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 13*x^6 + 18*x^7 + 27*x^8 + 37*x^9 + ...
G.f. = q^11 + q^35 + 2*q^59 + 3*q^83 + 6*q^107 + 8*q^131 + 13*q^155 + 18*q^179 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^2] / (2 q^(1/2) QPochhammer[ q]), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))};

Formula

Expansion of q^(-11/24) * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [1, 1, 1, 2, 1, 1, 1, 0, ...].
G.f.: (Sum_{k>=1} x^(2*k*(k-1))) / (Product_{k>=1} (1 - x^k)).
2 * a(n) = A073252(2*n + 1). -2 * a(n) = A022597(2*n + 1).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(13/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Expansion of (chi(q)^2 - chi(-q)^2)/(4*q) in powers of q^2 where chi() is a Ramanujan theta function. - Michael Somos, Nov 02 2019

A226622 Expansion of phi(x^2) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 4, 5, 9, 13, 21, 29, 46, 62, 90, 122, 171, 227, 311, 408, 545, 709, 933, 1198, 1555, 1980, 2536, 3205, 4063, 5092, 6400, 7966, 9928, 12281, 15198, 18684, 22979, 28097, 34346, 41789, 50813, 61527, 74453, 89757, 108114, 129809, 155704, 186221, 222503
Offset: 0

Views

Author

Michael Somos, Aug 31 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 13*x^5 + 21*x^6 + 29*x^7 + 46*x^8 + 62*x^9 + ...
1/q + q^23 + 4*q^47 + 5*q^71 + 9*q^95 + 13*q^119 + 21*q^143 + 29*q^167 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] / QPochhammer[ q], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(1/24) * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 3, 1, -2, 1, 3, 1, 0, ...].
G.f.: (Sum_{k in Z} x^(2*k^2)) / (Product_{k>0} (1 - x^k)).
a(n) = A022597(2*n) = A073252(2*n).
G.f. A(x) satisfies A(x^2) = ( chi(x)^2 + chi(-x)^2 )/2, where chi(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. Cf. A226635. - Peter Bala, Sep 29 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2025

A382345 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of two kinds. Containers may be left empty.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 4, 2, 0, 5, 6, 7, 2, 0, 6, 8, 12, 8, 2, 0, 7, 10, 17, 18, 11, 2, 0, 8, 12, 22, 28, 26, 12, 2, 0, 9, 14, 27, 38, 46, 34, 15, 2, 0, 10, 16, 32, 48, 66, 64, 46, 16, 2, 0, 11, 18, 37, 58, 86, 100, 94, 56, 19, 2, 0, 12, 20, 42, 68, 106, 136, 152, 124, 70, 20, 2, 0
Offset: 0

Views

Author

Peter Dolland, Mar 29 2025

Keywords

Examples

			Array starts:
 0 : [1, 2,  3,   4,   5,   6,   7,    8,    9,   10,   11]
 1 : [0, 2,  4,   6,   8,  10,  12,   14,   16,   18,   20]
 2 : [0, 2,  7,  12,  17,  22,  27,   32,   37,   42,   47]
 3 : [0, 2,  8,  18,  28,  38,  48,   58,   68,   78,   88]
 4 : [0, 2, 11,  26,  46,  66,  86,  106,  126,  146,  166]
 5 : [0, 2, 12,  34,  64, 100, 136,  172,  208,  244,  280]
 6 : [0, 2, 15,  46,  94, 152, 217,  282,  347,  412,  477]
 7 : [0, 2, 16,  56, 124, 214, 316,  426,  536,  646,  756]
 8 : [0, 2, 19,  70, 167, 302, 464,  640,  825, 1010, 1195]
 9 : [0, 2, 20,  84, 212, 406, 648,  922, 1212, 1512, 1812]
10 : [0, 2, 23, 100, 271, 542, 899, 1314, 1766, 2236, 2717]
...
		

Crossrefs

Antidiagonal sums give A000712.
Alternating antidiagonal sums give A073252.
Without empty containers: A381895.
Cf. A382342.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i))))
        end:
    A:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(A(n, d-n), n=0..d), d=0..11);  # Alois P. Heinz, Mar 29 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
       Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]];
    A[n_, k_] := Coefficient[b[n + k, n + k], x, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Apr 07 2025, after Alois P. Heinz *)
  • Python
    from sympy.utilities.iterables import partitions
    def a_row(n, length=11) -> list[int]:
        if n == 0 : return list(range(1, length + 1))
        t = [0] * length
        for p in partitions(n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= p[k] + 1
            if s > 0 :
                t[s] += fact
        for i in range(1, length - 1):
            t[i+1] += t[i] * 2 - t[i-1]
        return t
    for n in range(11): print(a_row(n))

Formula

A(0,k) = k + 1.
A(1,k) = 2*k.
A(2,k+1) = 2 + 5 * k.
A(n,1) = 2.
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A382342(n,i) for k <= n.
A(n,n+k) = A(n,n) + k * A000712(n).
A(n,k) = A382342(n,k) + 2 * A(n,k-1) - A(n,k-2) for 2 <= k <= n.
A(n,k) = A382342(n+k,k). - Alois P. Heinz, Mar 31 2025

A304626 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 + x^(n*k)))^n.

Original entry on oeis.org

1, 0, 1, 10, 47, 201, 849, 3578, 15147, 64516, 276268, 1188342, 5130987, 22226036, 96543989, 420368843, 1834203939, 8018057328, 35107961157, 153950675566, 675978772306, 2971700764920, 13078268135661, 57613905606250, 254038914924767, 1121081799217206, 4951199308679965
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Number of partitions of n into 2 or more distinct parts, with n types of each part. - Ilya Gutkovskiy, May 16 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 + x^(n k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[(1 + x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[(QPochhammer[-1, x, 1 + n]/QPochhammer[-1, x^n, 1 + n])^n, {x, 0, n}], {n, 0, 26}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.502476747617354487738... and c = 0.2605422331424384694... - Vaclav Kotesovec, May 16 2018

A073253 Table of expansion of Product (1+(xy)^n/y)(1+(xy)^n/x), n>0 by antidiagonals.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 2, 5, 2, 0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 3, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 11, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 11, 11, 2, 0
Offset: 0

Views

Author

Michael Somos, Jul 23 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Combinatorial interpretation is number of partitions of Gaussian integer n+ki into distinct parts of form a+(a-1)i and (b-1)+bi, a,b>0.
Jacobi triple product identity implies the g.f. equals the Ramanujan theta function divided by Product (1-(xy)^m), m>0.

Examples

			{1}; {1, 1}; {0, 1 ,0}; {0, 1, 1, 0}; {0, 1, 2, 1, 0}; {0, 0, 2, 2, 0, 0}; {0, 0, 1, 3, 1, 0, 0}; ...
		

References

  • J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992. p. 141.

Crossrefs

A073252 gives antidiagonal sums.

Programs

  • PARI
    {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, max(n, k), (1 + x^i * y^(i-1)) * (1 + x^(i-1) *y^i), 1 + x * O(x^n) + y * O(y^k)), n), k))}
Showing 1-7 of 7 results.