cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A000700 Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of replicable function number 96a. - N. J. A. Sloane, Jun 10 2015
For n >= 1, a(n) is the minimal row sum in the character table of the symmetric group S_n. The minimal row sum in the table corresponds to the one-dimensional alternating representation of S_n. The maximal row sum is in sequence A085547. - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003
Also the number of partitions of n into parts != 2 and differing by >= 6 with strict inequality if a part is even. [Alladi]
Let S be the set formed by the partial sums of 1+[2,3]+[2,5]+[2,7]+[2,9]+..., where [2,odd] indicates a choice, e.g., we may have 1+2, or 1+3+2, or 1+3+5+2+9, etc. Then A000700(n) is the number of elements of S that equal n. Also A000700(n) is the same parity as A000041(n) (the partition numbers). - Jon Perry, Dec 18 2003
a(n) is for n >= 2 the number of conjugacy classes of the symmetric group S_n which split into two classes under restriction to A_n, the alternating group. See the G. James - A. Kerber reference given under A115200, p. 12, 1.2.10 Lemma and the W. Lang link under A115198.
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times (these are the conjugates of the partitions of n into distinct odd parts). Example: a(15)=4 because we have [3,3,3,2,2,1,1], [3,2,2,2,2,1,1,1,1], [3,2,2,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
The INVERTi transform of A000009 (number of partitions of n into odd parts starting with offset 1) = (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, ...); = left border of triangle A146061. - Gary W. Adamson, Oct 26 2008
For n even: the sum over all even nonnegative integers, k, such that k^2 < n, of the number of partitions of (n-k^2)/2 into parts of size at most k. For n odd: the sum over all odd nonnegative integers, j, such that j^2 < n, of the number of partitions of (n-j^2)/2 into parts of size at most j. - Graham H. Hawkes, Oct 18 2013
This number is also (the number of conjugacy classes of S_n containing even permutations) - (the number of conjugacy classes of S_n containing odd permutations) = (the number of partitions of n into a number of parts having the same parity as n) - (the number of partitions of n into a number of parts having opposite parity as n) = (the number of partitions of n with largest part having same parity as n) - (the number of partitions with largest part having opposite parity as n). - David L. Harden, Dec 09 2016
a(n) is odd iff n belongs to A052002; that is, Sum_{n>=0} x^A052002(n) == Sum_{n>=0} a(n)*x^n (mod 2). - Peter Bala, Jan 22 2017
Also the number of conjugacy classes of S_n whose members yield unique square roots, i.e., there exists a unique h in S_n such that hh = g for any g in such a conjugacy class. Proof: first note that a permutation's square roots are determined by the product of the square roots of its decomposition into cycles of different lengths. h can only travel to one other cycle before it must "return home" (h^2(x) = g(x) must be in x's cycle), and, because if g^n(x) = x then h^2n(x) = x and h^2n(h(x)) = h(x), this "traveling" must preserve cycle length or one cycle will outpace the other. However, a permutation decomposing into two cycles of the same length has multiple square roots: for example, e = e^2 = (a b)^2, (a b)(c d) = (a c b d)^2 = (a d b c)^2, (a b c)(d e f) = (a d b e c f)^2 = (a e b f c d)^2, etc. This is true for any cycle length so we need only consider permutations with distinct cycle lengths. Finally, even cycle lengths are odd permutations and thus cannot be square, while odd cycle lengths have the unique square root h(x) = g^((n+1)/2)(x). Thus there is a correspondence between these conjugacy classes and partitions into distinct odd parts. - Keith J. Bauer, Jan 09 2024
a(2*n) equals the number of partitions of n into parts congruent to +-2, +-3, +-4 or +-5 mod 16. See Merca, 2015, Corollary 4.3. - Peter Bala, Dec 12 2024

Examples

			T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ...
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A218907.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end;
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0,
           b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1))))
        end:
    a:= n-> b(n, iquo(n+1, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 12 2016
  • Mathematica
    CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *)
    Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *)
    conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}]  (* shows self-conjugate partitions *)
    Table[Length[s[n]], {n, 1, 20}]  (* A000700(n), n >= 1 *)
    (* Peter J. C. Moses, Mar 12 2014 *)
    CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *)
    (O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A000700_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x^2)^2/(f(x)*f(x^4)) ).list()
    A000700_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1)).
G.f.: Sum_{k>=0} x^(k^2)/Product_{i=1..k} (1-x^(2*i)). - Euler (Hardy and Wright, Theorem 345)
G.f.: 1/Product_{i>=1} (1 + (-x)^i). - Jon Perry, May 27 2004
Expansion of chi(q) = (-q; q^2)_oo = f(q) / f(-q^2) = phi(q) / f(q) = f(-q^2) / psi(-q) = phi(-q^2) / f(-q) = psi(q) / f(-q^4), where phi(), chi(), psi(), f() are Ramanujan theta functions.
Sum_{k=0..n} A081360(k)*a(n-k) = 0, for n > 0. - John W. Layman, Apr 26 2000
Euler transform of period-4 sequence [1, -1, 1, 0, ...].
Expansion of q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) in powers of q. - Michael Somos, Jun 11 2004
Asymptotics: a(n) ~ exp(Pi*l_n)/(2*24^(1/4)*l_n^(3/2)) where l_n = (n-1/24)^(1/2) (Ayoub). The asymptotic formula in Ayoub is incorrect, as that would imply faster growth than the total number of partitions. (It was quoted correctly, the book is just wrong, not sure what the correct asymptotic is.) - Edward Early, Nov 15 2002. Right formula is a(n) ~ exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 23 2014
a(n) = (1/n)*Sum_{k = 1..n} (-1)^(k+1)*b(k)*a(n-k), n>1, a(0) = 1, b(n) = A000593(n) = sum of odd divisors of n. - Vladeta Jovovic, Jan 19 2002 [see Theorem 2(a) in N. Robbins's article]
For n > 0: a(n) = b(n, 1) where b(n, k) = b(n-k, k+2) + b(n, k+2) if k < n, otherwise (n mod 2) * 0^(k-n). - Reinhard Zumkeller, Aug 26 2003
Expansion of q^(1/24) * (m * (1 - m) / 16)^(-1/24) in powers of q where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
Given g.f. A(x), B(q) = (1/q)* A(q^3)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v * (u - v^2) * (v - u^2) - (4 * (1 - u*v))^2. - Michael Somos, Jul 16 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
Expansion of q^(1/24)*f(t) in powers of q = exp(Pi*i*t) where f() is Weber's function. - Michael Somos, Oct 18 2007
A069911(n) = a(2*n + 1). A069910(n) = a(2*n).
a(n) = Sum_{k=1..n} (-1)^(n-k) A008284(n,k). - Jeremy L. Martin, Jul 06 2013
a(n) = S(n,1), where S(n,m) = Sum_{k=m..n/2} (-1)^(k+1)*S(n-k,k) + (-1)^(n+1), S(n,n)=(-1)^(n+1), S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
G.f.: Product_{k>0} (1 + x^(2*k-1)) = Product_{k>0} (1 - (-x)^k) / (1 - (-x)^(2*k)) = Product_{k>0} 1 / (1 + (-x)^k). - Michael Somos, Nov 08 2014
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/12) / sqrt(24*n-1) ~ exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(6)/(8*Pi) + Pi/(48*sqrt(6))) / sqrt(n) + (5/128 - 45/(64*Pi^2) + Pi^2/27648) / n). - Vaclav Kotesovec, Jan 08 2017
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Given g.f. A(x), B(q) = (1/q) * A(q^24) / 2^(1/4) satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 + 2*u*v * (1 - (u*v)^4). - Michael Somos, Mar 14 2019
G.f.: Sum_{n >= 0} x^n/Product_{i = 1..n} ( 1 + (-1)^(i+1)*x^i ). - Peter Bala, Nov 30 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x) * Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = ....
G.f.: 1/(1 + x) * Sum_{n >= 0} x^(n-1)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)) * Sum_{n >= 0} x^(n-2)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)*(1 + x^5)) * Sum_{n >= 0} x^(n-3)^2/ Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
a(n) = A046682(n) - A000701(n). See Gupta and also Ballantine et al. - Michel Marcus, Sep 04 2021
G.f.: A(x) = exp( Sum_{k >= 1} (-1)^k/(k*(x^k - x^(-k))) ). - Peter Bala, Dec 23 2021

A081362 Expansion of q^(1/24) * eta(q) / eta(q^2) in powers of q.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -12, 12, -14, 16, -17, 18, -20, 23, -25, 26, -29, 33, -35, 37, -41, 46, -49, 52, -57, 63, -68, 72, -78, 87, -93, 98, -107, 117, -125, 133, -144, 157, -168, 178, -192, 209, -223, 236, -255, 276, -294, 312, -335, 361, -385
Offset: 0

Views

Author

Michael Somos, Mar 18 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
(Number of partitions of n into an even number of parts) - (number of partitions of n into an odd number of parts). [Fine]
Number 3 of the 130 identities listed in Slater 1952. - Michael Somos, Aug 20 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 2*x^10 - 2*x^11 + ...
G.f. = 1/q - q^23 - q^71 + q^95 - q^119 + q^143 - q^167 + 2*q^191 - 2*q^215 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 425, Corollary 1, Eqs. (37)-(40).
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 38, Eq. (22.14).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[1 - x^k, {k, 1, n, 2}], {x, 0, n}];
    a[ n_] := With[ {t = Log[q] / (2 Pi I)}, SeriesCoefficient[ q^(1/24) DedekindEta[t] / DedekindEta[2 t], {q, 0, n}]];
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {}, {}, x^2, x], {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ -x, x], {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 + x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {}, {-1}, x, -1] 2, {x, 0, n}]; (* Michael Somos, May 11 2015 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (m / ( 1 - m)^2 / (16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, May 11 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^2 + A), n))};
    
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    print([sum((-1)^k*number_of_partitions_length(n, k) for k in (0..n)) for n in (0..69)]) # Peter Luschny, Aug 03 2015

Formula

G.f.: Product_{k>0} (1 - x^(2*k-1)) = Product_{k>0} 1 / (1 + x^k) = 1 + Sum_{k>0} (-x)^k / (Product_{i=1..k} (1 - x^i)).
a(n) = A027187(n)-A027193(n). [Fine]
This is the convolution inverse of A000009 (partitions into distinct parts) - i.e. the negation of the INVERTi transform of A000009. - Franklin T. Adams-Watters, Jan 06 2006
Expansion of chi(-x) = chi(-x^2) / chi(x) = phi(-x) / f(-x) = phi(-x^2) / f(x) = psi(-x) / f(-x^4) = f(-x) / f(-x^2) = f(-x^2) / psi(x) in powers of x where chi(), psi(), phi(), f() are Ramanujan theta functions.
Expansion of chi(x) * chi(-x) = f(x) / psi(x) = f(-x) / psi(-x) in powers of x^2 where chi(), psi(), f() are Ramanujan theta functions.
Expansion of f(-x, -x^5) / psi(x^3) = phi(-x^3) / f(x, x^2) in powers of x where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Jun 03 2015
Given g.f. A(x), then B(q) = A(q^3)^8 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2*v + 16*u - v^2.
G.f. A(x) satisfies A(x^2) = A(x) * A(-x).
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A000009.
Euler transform of period 2 sequence [ -1, 0, ...].
Expansion of q^(1/24) * f1(t) in powers of q = exp(Pi i t) where f1() is a Weber function.
a(n) = (-1)^n * A000700(n). a(2*n) = A069910(n). a(2*n + 1) = - A069911(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Feb 25 2015
a(n) = Sum_{k = 0..n} (-1)^k*A072233(n,k). - Peter Luschny, Aug 03 2015
G.f.: Sum_{k>=0} (-1)^k * x^k^2 / (Product_{i=1..k} (1 - x^(2*i))). - Michael Somos, Aug 20 2015
Sum_{j>=0} a(n-A000217(j)) = 0 if n not in A152749, = (-1)^k if n is in A152749, n=k*(3*k-1). [Merca, Corollary 4.1] - R. J. Mathar, Jun 18 2016
a(n) = -(1/n)*Sum_{k=1..n} A000593(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, May 28 2018
G.f.: (1 - x) * Sum_{k >= 0} (-1)^k * x^(k*(k+2)) / (Product_{i = 1..k} (1 - x^(2*i))) = (1 - x)*(1 - x^3) * Sum_{k >= 0} (-1)^k * x^(k*(k+4)) / (Product_{i = 1..k} (1 - x^(2*i)))= (1 - x)*(1 - x^3)*(1 - x^5) *
Sum_{k >= 0} (-1)^k * x^(k*(k+6)) / (Product_{i = 1..k} (1 - x^(2*i))) = .... - Peter Bala, Jan 15 2021

A154293 Integers of the form t/6, where t is a triangular number (A000217).

Original entry on oeis.org

0, 1, 6, 11, 13, 20, 35, 46, 50, 63, 88, 105, 111, 130, 165, 188, 196, 221, 266, 295, 305, 336, 391, 426, 438, 475, 540, 581, 595, 638, 713, 760, 776, 825, 910, 963, 981, 1036, 1131, 1190, 1210, 1271, 1376, 1441, 1463, 1530, 1645, 1716, 1740, 1813, 1938, 2015
Offset: 1

Views

Author

Keywords

Comments

Old definition was "Integers of the form: 1/6+2/6+3/6+4/6+5/6+...".
1/6 + 2/6 + 3/6 = 1, 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 + 7/6 + 8/6 = 6, ...
a(n) is the set of all integers k such that 48k+1 is a perfect square. The square roots of 48*a(n) + 1 = 1, 7, 17, 23, 25, ... = 8*(n-floor(n/4)) + (-1)^n. - Gary Detlefs, Mar 01 2010
Conjecture: A193828 divided by 2. - Omar E. Pol, Aug 19 2011
The above conjecture is correct. - Charles R Greathouse IV, Jan 02 2012
Quasipolynomial of order 4. - Charles R Greathouse IV, Jan 02 2012
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^n/Product_{k = 1..2*n} (1 + x^k) = 1 + x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... Cf. A218171. [added Jan 21 2025: this is correct - see Berndt et al., Theorem 3.2.] - Peter Bala, Feb 04 2021
From Peter Bala, Dec 12 2024 (Start)
The sequence terms occur as exponents in the expansion of F(x)*Product_{n >= 1} (1 - x^n) = Product_{n >= 1} (1 - x^n)*(1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)) = 1 - x - x^6 + x^11 + x^13 - x^20 - x^35 + x^46 + x^50 - - + + ..., where F(x) is the g.f. of A069910.
It appears that the sequence terms occur as exponents in the expansion 1/(1 - x) * ( - x^2 + Sum_{n >= 1} x^floor((3*n+1)/2) * 1/Product_{k = 1..n} (1 + x^k) ) = x^6 + x^11 - x^13 - x^20 + x^35 + x^46 - - + + .... (End)
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^(n+1)/Product_{k = 1..2*n+2} (1 + x^k) = x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... - Peter Bala, Jan 21 2025

Examples

			G.f. = x^2 + 6*x^3 + 11*x^4 + 13*x^5 + 20*x^6 + 35*x^7 + 46*x^8 + ...
		

Crossrefs

Programs

  • Magma
    /* By definition: */ [t/6: n in [0..160] | IsIntegral(t/6) where t is n*(n+1)/2]; // Bruno Berselli, Mar 07 2016
  • Maple
    f:=n-> 8*(n-floor(n/4))+(-1)^n:seq((f(n)^2-1)/48,n=0..51); # Gary Detlefs, Mar 01 2010
  • Mathematica
    lst={}; s=0; Do[s+=n/6; If[Floor[s]==s, AppendTo[lst, s]], {n, 0, 7!}]; lst (* Orlovsky *)
    Join[{0}, Select[Table[Plus@@Range[n]/6, {n, 200}], IntegerQ]] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,1,6,11,13,20,35},60] (* Charles R Greathouse IV, Jan 20 2012 *)
    a[ n_] := (3 n^2 + If[ OddQ[ Quotient[ n + 1, 2]], -5 n + 2, -n]) / 4; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := Module[{m = n}, If[ n < 1, m = 1 - n]; SeriesCoefficient[ x^2 (1 + 4 x + x^2) (1 - x^2) (1 - x^6) / ((1 - x)^2 (1 - x^3) (1 - x^4)^2), {x, 0, m}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    a(n)=n--;(8*(n-n\4)+(-1)^n)^2\48 \\ Charles R Greathouse IV, Jan 02 2012
    
  • PARI
    {a(n) = (3*n^2 + if( (n+1)\2%2, -5*n+2,-n)) / 4}; /* Michael Somos, Feb 10 2015 */
    
  • PARI
    {a(n) = if( n<1, n = 1-n); polcoeff( x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2) + x * O(x^n), n)}; /* Michael Somos, Feb 10 2015 */
    

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = A000217(A108752(n))/6.
G.f.: x^2*(x^2-x+1)*(x^2+4*x+1)/((1+x^2)^2*(1-x)^3) (conjectured). (End)
The conjectured g.f. is correct. - Charles R Greathouse IV, Jan 02 2012
a(n) = (f(n)^2-1)/48 where f(n) = 8*(n-floor(n/4))+(-1)^n, with offset 0, a(0)=0. - Gary Detlefs, Mar 01 2010
a(n) = a(1-n) for all n in Z. - Michael Somos, Oct 27 2012
G.f.: x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2). - Michael Somos, Feb 10 2015
Sum_{n>=2} 1/a(n) = 12 - (1+4/sqrt(3))*Pi. - Amiram Eldar, Mar 18 2022
a(n) = A069497(n)/6. - Hugo Pfoertner, Nov 19 2024
From Peter Bala, Jan 21 2025: (Start)
a(4*n) = 12*n^2 - n; a(4*n+1) = 12*n^2 + n;
a(4*n+2) = (3*n + 1)*(4*n + 1) = A033577(n); a(4*n+3) = (3*n + 2)*(4*n + 3) = A033578(n+1).
Let T(n) = n*(n + 1)/2 denote the n-th triangular number. Then
a(4*n) = (1/6) * T(12*n-1); a(4*n+1) = (1/6) * T(12*n);
a(4*n+2) = (1/6) * T(12*n+3); a(4*n+3) = (1/6) * T(12*n+8). (End)

Extensions

Definition rewritten by M. F. Hasler, Dec 31 2012

A092869 Series expansion of the Ramanujan-Goellnitz-Gordon continued fraction.

Original entry on oeis.org

1, -1, 0, 1, -1, 1, 0, -2, 2, -1, 0, 2, -3, 2, 0, -2, 4, -4, 0, 4, -6, 5, 0, -6, 9, -6, 0, 7, -12, 9, 0, -10, 16, -13, 0, 15, -22, 17, 0, -20, 29, -21, 0, 25, -38, 28, 0, -32, 50, -39, 0, 43, -64, 49, 0, -56, 82, -60, 0, 69, -105, 78, 0, -86, 132, -101, 0, 112, -166, 125, 0, -142, 208, -153, 0, 172, -258, 192, 0
Offset: 0

Views

Author

Michael Somos, Mar 07 2004; corrected Jun 09 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1876) writes "XIII. tan(pi/16) = (e^(-pi/2) - e^(-3 pi/2) - e^(-15 pi/2) + e^(-21 pi/2) + e^(-45 pi/2) - &c.) / (1 - e^(-6 pi/2) - e^(-10 pi/2) + e^(-28 pi/2) + e^(-36 pi/2) - &c.), ..." where the numerator is q * f( -q^2, -q^14) and denominator is f( -q^6, -q^10) where q = e^(-pi/2). - Michael Somos, Jun 22 2012
Berndt writes "[...] v = q^(1/2) f(-q,-q^7) / f(-q^3,-q^5). Then v = q^(1/2) / (1 + q + q^2 / (1 + q^3 + q^4 / (1 + q^5 + q^6 / (1 + x^7 + ...)))). (1.1)". - Michael Somos, Jul 09 2012
Jacobi writes "(7.) (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2(1+k'))) = (q - q^3 - q^15 + q^21 + q^45 - q^55 - ...) / (1 - q^6 - q^10 + q^28 + q^36 - q^66 - ...)." - Michael Somos, Sep 11 2012

Examples

			G.f. = 1 - x + x^3 - x^4 + x^5 - 2*x^7 + 2*x^8 - x^9 + 2*x^11 - 3*x^12 + ...
G/f. = q - q^3 + q^7 - q^9 + q^11 - 2*q^15 + 2*q^17 - q^19 + 2*q^23 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see p. 221 Entry 1(ii), eq. (1.1).
  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), 111-112. see Eq. XIII
  • C. G. J. Jacobi, Über die Zur Numerischen Berechnung der Elliptischen Functionen Zweckmaessigsten Formeln, Crelle Bd. 26 (1843), 93-114 = Gesammelte Werke, Bd. 1, 1881, 343-368.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1/2), 159); LS := LaurentSeriesRing( RationalField()); A[3] / A[2]; /* Michael Somos, Aug 31 2018 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^8] QPochhammer[ x^7, x^8] /(QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8]), {x, 0, n}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2] / (EllipticTheta[ 3, 0, x] + EllipticTheta[ 3, 0, x^2]), {x, 0, n + 1/2}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ Product[(1 - q^k)^KroneckerSymbol[ 8, k], {k, n}], {q, 0, n}] (* Michael Somos, Jul 08 2012 *)
  • PARI
    {a(n) = local(A, u, v); if( n<0, 0, n = 2*n + 1; A = x; forstep( k=3, n, 2, u = A + x * O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff(u^2 - v + v*u^2 + v^2, k+1) / 2); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = x * subst(A, x, x^2); A = sqrt(A * (1 - A) / (1 + A) / x)); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = eta(x^8 + x * O(x^n))^2 / eta(x^4 + x * O(x^n)); A2 = sum( k=1, sqrtint(n), x^k^2 + x^(2*k^2), 1 + x * O(x^n)); polcoeff(A / A2, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( 2 * A^2 * A2^2 / (A^2 + A2), n))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^kronecker(2, k))) \\ Seiichi Manyama, Sep 24 2019
    

Formula

Expansion of f(-x, -x^7) / f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Aug 02 2011
Expansion of (phi(x) - phi(x^2)) / (2 * x * psi(x^4)) = 2 * psi(x^4) / (phi(x) + phi(x^2)) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 15 2006
Expansion of q^(-1) * (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2 * (1 + k'))) in powers of q^2 where k' is the complementary elliptic modulus. - Michael Somos, Sep 11 2012
Euler transform of period 8 sequence [-1, 0, 1, 0, 1, 0, -1, 0, ...].
G.f. A(x) satisfies both A(-x) * A(x) = A(x^2) and x * A(x)^2 = B(x * A(x^2)) where B(x) = x * (1 - x) / (1 + x).
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v + v^2 + v*u^2.
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = (1 - u*v) * (u + v)^3 - v * (1 + v^2) * (1 - u^4). - Michael Somos, Feb 15 2006
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^5)) where f(u, v) = (u - v) * (1 + u*v)^5 - u * (1 - u^4) * (1 + v^2) * (1 - 6*v^2 + v^4). - Michael Somos, Feb 15 2006
G.f.: Product_{k>=0} (1 - x^(8*k + 1)) * (1 - x^(8*k + 7)) / ((1 - x^(8*k + 3)) * (1 - x^(8*k + 5))).
G.f. = continued fraction 1/(1 + x + x^2/(1 + x^3 + x^4/(1 + x^5 + x^6/(1 + x^7 + ...)))). Convolution inverse of A111374.
a(2*n + 1) = -A226559(n). - Michael Somos, Jun 12 2013
a(4*n) = A083365(n). a(4*n + 2) = 0.
G.f. A(x) satisfies x*A(-x^2) = x*B(x^2)/C(x^2) = (F(x) - F(-x))/(F(x) + F(-x)), where B(x) is the g.f. of A069911, C(x) is the g.f. of A069910 and F(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. - Peter Bala, Feb 07 2021

A069911 Expansion of Product_{i in A069909} 1/(1 - x^i).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 49, 57, 68, 78, 93, 107, 125, 144, 168, 192, 223, 255, 294, 335, 385, 437, 501, 568, 647, 732, 833, 939, 1065, 1199, 1355, 1523, 1717, 1925, 2166, 2425, 2720, 3040, 3405, 3797, 4244, 4727, 5272
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Arises from an identity of Slater's.
Number of partitions of 2*n+1 into distinct odd parts. - Vladeta Jovovic, May 08 2003
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of 2n+1 such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times. Example: a(4)=2 because we have [3,2,2,1,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
Difference between number of partitions of 2n+1 with an odd number of parts and those with an even number of parts (this is a consequence of Jovovic's comment above). - George Beck, May 22 2016
Let b(k) be the convolution inverse of A035457, k=1, 2, 3, ...; then a(n) = -b(4n+3), n = 0, 1, 2, 3, ... (conjectured). - George Beck, Aug 19 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + ...
G.f. = q^23 + q^71 + q^119 + q^167 + 2*q^215 + 2*q^263 + 3*q^311 + 4*q^359 + ...
		

Crossrefs

Programs

  • Maple
    h:=product(1+x^(2*i-1),i=1..60): hser:=series(h,x=0,120): seq(coeff(hser,x^(2*n+1)),n=0..56); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    H[x_] := x*QPochhammer[-1/x, x^2]/(1 + x); s = (H[Sqrt[x]] - H[-Sqrt[x]]) / (2*Sqrt[x]) + O[x]^60; CoefficientList[s, x] (* Jean-François Alcover, Nov 14 2015, after Emeric Deutsch *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n=2*n+1; A = x * O(x^n); -polcoeff( eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Jul 18 2006 */

Formula

a(n) = A000700(2n+1) = -A081362(2n+1).
Euler transform of period 16 sequence [ 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: ( H(sqrt(x)) - H(-sqrt(x)) ) / (2*sqrt(x)), where H(x)=prod(i>=1, 1+x^(2*i-1) ). - Emeric Deutsch, Apr 16 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 14 2015
Expansion of f(x, x^7) / f(-x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Jun 04 2016

A027356 Array read by rows: T(n,k) = number of partitions of n into distinct odd parts in which k is the greatest part, for k=1,2,...,n, n>=1.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Clark Kimberling, revised Jul 23 2004

Keywords

Comments

First T(n,k) not 0 or 1 is T(17,9)=2, which counts 1+7+9 and 3+5+9. Row sums: A000700.

Examples

			First 5 rows:
1
0 0
0 0 1
0 0 1 0
0 0 0 0 1
Row 40 with even-numbered terms deleted:
0 0 0 0 0 0 2 5 6 7 6 5 4 3 2 1 1 1 1;
E.g. final 2 counts these two partitions: 9+31 and 1+3+5+31.
		

Crossrefs

Cf. A000700.
T(4n+1,2n+1) gives A069910.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(n=0, 1,
          b(n, i-1) +(p-> `if`(p>n, 0, b(n-p, i-1)))((2*i-1))))
        end:
    T:= (n, k)-> `if`(k::even, 0, b(n-k, (k-1)/2)):
    seq(seq(T(n, k), k=1..n), n=1..20);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == 0, 1, b[n, i - 1] + Function[p, If[p > n, 0, b[n - p, i - 1]]][2i - 1]]];
    T [n_, k_] := If[EvenQ[k], 0, b[n - k, (k - 1)/2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

Formula

T(n, 1)=0 for all n; T(n, n)=1 for all odd n>1; and for n>=3, T(n, k)=0 if k is even, else T(n, k)=Sum{T(n-k, i): i=1, 2, ..., n-1} for k=2, 3, ..., n-1.

Extensions

Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar

A069908 Numbers congruent to +-2, +-3, +-4 or +-5 mod 16.

Original entry on oeis.org

2, 3, 4, 5, 11, 12, 13, 14, 18, 19, 20, 21, 27, 28, 29, 30, 34, 35, 36, 37, 43, 44, 45, 46, 50, 51, 52, 53, 59, 60, 61, 62, 66, 67, 68, 69, 75, 76, 77, 78, 82, 83, 84, 85, 91, 92, 93, 94, 98, 99, 100, 101, 107, 108, 109, 110, 114, 115, 116, 117, 123
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&] (* Jean-François Alcover, Apr 09 2014 *)
    CoefficientList[Series[(2 + x + x^2 + x^3 + 6 x^4 + x^5 + x^6 + x^7 + 2 x^8)/((1 + x) (x^2 + 1) (x^4 + 1) (x - 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Apr 10 2014 *)
    LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{2,3,4,5,11,12,13,14,18},70] (* Harvey P. Dale, Dec 16 2015 *)

Formula

G.f.: x*(2+x+x^2+x^3+6*x^4+x^5+x^6+x^7+2*x^8) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011

A373067 Number of partitions of n such that (smallest part) >= 2*(number of parts).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 26, 28, 32, 34, 39, 42, 47, 51, 58, 62, 70, 76, 85, 92, 103, 111, 124, 134, 148, 160, 177, 190, 210, 226, 248, 267, 293, 315, 345, 371, 405, 436, 476, 511, 557, 599, 651, 700, 760, 816
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=70, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k^2)/prod(j=1, k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(2*k^2)/Product_{j=1..k} (1-x^j).

A069909 Numbers congruent to +-1, +-4, +-6, +-7 mod 16.

Original entry on oeis.org

1, 4, 6, 7, 9, 10, 12, 15, 17, 20, 22, 23, 25, 26, 28, 31, 33, 36, 38, 39, 41, 42, 44, 47, 49, 52, 54, 55, 57, 58, 60, 63, 65, 68, 70, 71, 73, 74, 76, 79, 81, 84, 86, 87, 89, 90, 92, 95, 97, 100, 102, 103, 105, 106, 108, 111, 113, 116, 118, 119, 121
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

References

  • G. E. Andrews et al., q-Engel series expansions and Slater's identities, Quaestiones Math., 24 (2001), 403-416.

Crossrefs

Programs

  • Mathematica
    Select[Range[130],MemberQ[{1,4,6,7,9,10,12,15},Mod[#,16]]&] (* or *) LinearRecurrence[{2,-1,0,-1,2,-1},{1,4,6,7,9,10},80] (* Harvey P. Dale, Sep 09 2012 *)

Formula

G.f. x*(1+x)*(x^4+x^3-2*x^2+x+1) / ( (x^4+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(0)=1, a(1)=4, a(2)=6, a(3)=7, a(4)=9, a(5)=10, a(n)=2*a(n-1)-a(n-2)- a(n-4)+ 2*a(n-5)-a(n-6). - Harvey P. Dale, Sep 09 2012

A233758 Bisection of A006950 (the even part).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 28, 43, 70, 105, 161, 236, 350, 501, 722, 1016, 1431, 1981, 2741, 3740, 5096, 6868, 9233, 12306, 16357, 21581, 28394, 37128, 48406, 62777, 81182, 104494, 134131, 171467, 218607, 277691, 351841, 444314, 559727, 703002, 880896, 1100775
Offset: 1

Views

Author

Omar E. Pol, Jan 11 2014

Keywords

Comments

See Zaletel-Mong paper, page 14, FIG. 11: C2a is this sequence, C2b is A233759, C2c is A015128.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i - Mod[i, 2]]]]];
    a[n_] := b[2 n - 2, 2 n - 2];
    Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz in A006950 *)
Showing 1-10 of 13 results. Next