A294261
E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n).
Original entry on oeis.org
1, -1, 1, -7, 49, -301, 2281, -21211, 260737, -3254329, 41086801, -589336111, 9851907121, -170708882917, 3060177746809, -60544788499651, 1298663388032641, -28777111728560881, 665551703689032097, -16413980708818538839, 428253175770218766001
Offset: 0
A294340
E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n/n).
Original entry on oeis.org
1, -1, 1, -3, 15, -75, 435, -3045, 29505, -305865, 3193785, -36542835, 501892335, -7286043555, 108056360475, -1793622856725, 32996752625025, -620276725767825, 11975531764755825, -249801487147455075, 5592450521376068175, -130966142569782327675
Offset: 0
A000700
Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0
T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ...
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
- B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- K. Alladi, A variation on a theme of Sylvester - a smoother road to Gollnitz (Big) theorem, Discrete Math., 196 (1999), 1-11.
- Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini and Boya Wen, On a Partition Identity of Lehmer, arXiv:2109.00609 [math.CO], 2021.
- J. Dousse, Siladic's theorem: Weighted words, refinement and companion, Proceedings of the American Mathematical Society, 145 (2017), 1997-2009.
- J. A. Ewell, Recursive determination of the enumerator for sums of three squares, Internat. J. Math. and Math. Sci, 24 (2000), 529-532.
- E. Friedman, Illustration of initial terms.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
- H. Gupta, Combinatorial proof of a theorem on partitions into an even or odd number of parts, J. Combinatorial Theory Ser. A 21 (1976), no. 1, 100-103.
- R. K. Guy, A theorem in partitions, Research Paper 11, Jan. 1967, Math. Dept., Univ. of Calgary. [Annotated scanned copy]
- Christopher R. H. Hanusa and Rishi Nath, The number of self-conjugate core partitions, arxiv:1201.6629 [math.NT], 2012.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 12.
- Mircea Merca, The bisectional pentagonal number theorem, Journal of Number Theory, Vol. 157 (Dec. 2015), pp. 223-232 (corollary 4.3).
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, pp. 60-75, function p_s(n).
- M. Osima, On the irreducible representations of the symmetric group, Canad. J. Math., 4 (1952), 381-384.
- Padmavathamma, R. Raghavendra and B. M. Chandrashekara, A new bijective proof of a partition theorem of K. Alladi, Discrete Math., 237 (2004), 125-128.
- Igor Pak and Greta Panova, Unimodality via Kronecker products, arXiv preprint arXiv:1304.5044 [math.CO], 2013.
- Igor Pak and Greta Panova, Bounds on Kronecker coefficients via contingency tables, Linear Algebra and its Applications (2020), Vol. 602, 157-178.
- J. Perry, Yet More Partition Function. [Archived copy as of Sep 23 2006 from web.archive.org]
- N. Robbins, Some identities connecting partition functions to other number theoretic functions, Rocky Mountain J. Math. Volume 29, Number 1 (1999), 335-345.
- I. Siladic, Twisted SL(C,3)~- modules and combinatorial identities, Glasnick Matematicki, 52 (2017), 53-77.
- Michael Somos, Introduction to Ramanujan theta functions.
- G. N. Watson, Two tables of partitions, Proc. London Math. Soc., 42 (1936), 550-556.
- Eric Weisstein's World of Mathematics, Self-Conjugate Partition.
- Eric Weisstein's World of Mathematics, Partition Function P.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
- Mark Wildon, Counting Partitions on the Abacus, arXiv:math/0609175 [math.CO], 2006.
- Index entries for McKay-Thompson series for Monster simple group
Cf.
A000009,
A000041,
A000701,
A046682,
A052002,
A053250,
A069910,
A069911,
A081362 (a signed version),
A085547,
A088994 (labeled version),
A146061,
A169987 -
A169995,
A295291,
A304044.
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023
-
N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end;
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0,
b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1))))
end:
a:= n-> b(n, iquo(n+1, 2)):
seq(a(n), n=0..80); # Alois P. Heinz, Mar 12 2016
-
CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *)
a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *)
Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *)
conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}] (* shows self-conjugate partitions *)
Table[Length[s[n]], {n, 1, 20}] (* A000700(n), n >= 1 *)
(* Peter J. C. Moses, Mar 12 2014 *)
CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *)
(O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
-
S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
-
my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
-
from math import prod
from sympy import factorint
def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
-
from sage.modular.etaproducts import qexp_eta
m=80
def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
def A000700_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x^2)^2/(f(x)*f(x^4)) ).list()
A000700_list(m) # G. C. Greubel, Sep 07 2023
A000593
Sum of odd divisors of n.
Original entry on oeis.org
1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1
G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
- Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
- Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Francesca Aicardi, Matricial formulas for partitions, arXiv:0806.1273 [math.NT], 2008.
- Michael Baake and Robert V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG], 1999; Canad. J. Math. 51 (1999), 1258-1276.
- John A. Ewell, On the sum-of-divisors function, Fib. Q., 45 (2007), 205-207.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Heekyoung Hahn, Convolution sums of some functions on divisors, arXiv:1507.04426 [math.NT], 2015.
- Kaya Lakein and Anne Larsen, A Proof of Merca's Conjectures on Sums of Odd Divisor Functions, arXiv:2107.07637 [math.NT], 2021.
- Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017, also here
- Mircea Merca, Congruence identities involving sums of odd divisors function, Proceedings of the Romanian Academy, Series A, Volume 22, Number 2/2021, pp. 119-125.
- Hossein Movasati and Younes Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv:1603.09411 [math.AG], 2016.
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), Article 01.2.1.
- N. J. A. Sloane, Transforms.
- H. J. Stephen Smith, Report on the Theory of Numbers. — Part VI., Report of the 35 Meeting of the British Association for the Advancement of Science (1866). See p. 336.
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Eric Weisstein's World of Mathematics, Partition Function Q.
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
- Index entries for "core" sequences.
- Index entries for sequences mentioned by Glaisher.
Cf.
A000005,
A000203,
A000265,
A001227,
A006128,
A050999,
A051000,
A051001,
A051002,
A065442,
A078471 (partial sums),
A069289,
A247837 (subset of the primes).
-
a000593 = sum . a182469_row -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
-
[&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
-
A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
-
Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
-
{a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
-
N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j))) /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
-
s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
-
a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
-
from math import prod
from sympy import factorint
def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
-
[sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
A072233
Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002
Table begins (upper left corner = T(0,0)):
1 1 1 1 1 1 1 1 1 ...
0 1 1 1 1 1 1 1 1 ...
0 1 2 2 2 2 2 2 2 ...
0 1 2 3 3 3 3 3 3 ...
0 1 3 4 5 5 5 5 5 ...
0 1 3 5 6 7 7 7 7 ...
0 1 4 7 9 10 11 11 11 ...
0 1 4 8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From _Wolfdieter Lang_, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
00 1
01 0 1
02 0 1 1
03 0 1 1 1
04 0 1 2 1 1
05 0 1 2 2 1 1
06 0 1 3 3 2 1 1
07 0 1 3 4 3 2 1 1
08 0 1 4 5 5 3 2 1 1
09 0 1 4 7 6 5 3 2 1 1
10 0 1 5 8 9 7 5 3 2 1 1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From _Gus Wiseman_, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
9 54 333 3222 22221 222111 2211111 21111111 111111111
63 432 3321 32211 321111 3111111
72 441 4221 33111 411111
81 522 4311 42111
531 5211 51111
621 6111
711
(End)
Sum of antidiagonal entries T(n, k) with n+k=m equals
A000041(m).
The version for factorizations is
A316439.
-
Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
-
from sage.combinat.partition import number_of_partitions_length
[[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015
A048272
Number of odd divisors of n minus number of even divisors of n.
Original entry on oeis.org
1, 0, 2, -1, 2, 0, 2, -2, 3, 0, 2, -2, 2, 0, 4, -3, 2, 0, 2, -2, 4, 0, 2, -4, 3, 0, 4, -2, 2, 0, 2, -4, 4, 0, 4, -3, 2, 0, 4, -4, 2, 0, 2, -2, 6, 0, 2, -6, 3, 0, 4, -2, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 6, -5, 4, 0, 2, -2, 4, 0, 2, -6, 2, 0, 6, -2, 4, 0, 2, -6, 5, 0, 2, -4, 4, 0, 4, -4, 2, 0, 4, -2, 4
Offset: 1
a(20) = -2 because 20 = 2^2*5^1 and (1-2)*(1+1) = -2.
G.f. = x + 2*x^3 - x^4 + 2*x^5 + 2*x^7 - 2*x^8 + 3*x^9 + 2*x^11 - 2*x^12 + ...
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), first formula.
- S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 97, 7(ii).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / n, for n = 1..1000000
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_{o-e}(n).
- Index entries for sequences mentioned by Glaisher.
-
a048272 n = a001227 n - a183063 n -- Reinhard Zumkeller, Jan 21 2012
-
[&+[(-1)^(d+1):d in Divisors(n)] :n in [1..95] ]; // Marius A. Burtea, Aug 10 2019
-
add(x^n/(1+x^n), n=1..60): series(%,x,59);
A048272 := proc(n)
local a;
a := 1 ;
for pfac in ifactors(n)[2] do
if pfac[1] = 2 then
a := a*(1-pfac[2]) ;
else
a := a*(pfac[2]+1) ;
end if;
end do:
a ;
end proc: # Schmitt, sign corrected R. J. Mathar, Jun 18 2016
# alternative Maple program:
a:= n-> -add((-1)^d, d=numtheory[divisors](n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 28 2018
-
Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
dif[n_]:=Module[{divs=Divisors[n]},Count[divs,?OddQ]-Count[ divs, ?EvenQ]]; Array[dif,100] (* Harvey P. Dale, Aug 21 2011 *)
a[n]:=Sum[-(-1)^d,{d,Divisors[n]}] (* Steven Foster Clark, May 04 2018 *)
f[p_, e_] := If[p == 2, 1 - e, 1 + e]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 09 2022 *)
-
{a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^d))}; /* Michael Somos, Jul 22 2006 */
-
N=17; default(seriesprecision,N); x=z+O(z^(N+1))
c=sum(j=1,N,j*x^j); \\ log case
s=-log(prod(j=1,N,(1+x^j)^(1/j)));
s=serconvol(s,c)
v=Vec(s) \\ Joerg Arndt, May 03 2008
-
a(n)=my(o=valuation(n,2),f=factor(n>>o)[,2]);(1-o)*prod(i=1,#f,f[i]+1) \\ Charles R Greathouse IV, Feb 10 2013
-
a(n)=direuler(p=1,n,if(p==2,(1-2*X)/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */
-
{a(n) = my(d = n -> if(frac(n), 0, numdiv(n))); if( n<1, 0, if( n%4, 1, -1) * (d(n) - 2*d(n/2) + 2*d(n/4)))}; /* Michael Somos, Aug 11 2017 */
A304969
Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).
Original entry on oeis.org
1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
((1)) ((2)) ((3)) ((4))
((1)(1)) ((21)) ((31))
((1)(2)) ((1)(3))
((2)(1)) ((2)(2))
((1)(1)(1)) ((3)(1))
((1)(21))
((21)(1))
((1)(1)(2))
((1)(2)(1))
((2)(1)(1))
((1)(1)(1)(1))
(End)
For partitions instead of compositions we have
A270995, non-strict
A063834.
A072233 counts partitions by sum and length.
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(j)*a(n-j), j=1..n))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
-
nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
A240009
Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, -floor(n/2)+(n mod 2)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 4, 7, 7, 6, 8, 6, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 0
T(5,-1) = 1: [2,2,1].
T(5,0) = 2: [4,1], [3,2].
T(5,1) = 1: [5].
T(5,2) = 1: [2,1,1,1].
T(5,3) = 1: [3,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
: n\k : -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 ...
+-----+----------------------------------------------------
: 0 : 1;
: 1 : 1;
: 2 : 1, 0, 0, 1;
: 3 : 1, 1, 0, 1;
: 4 : 1, 1, 0, 1, 1, 0, 1;
: 5 : 1, 2, 1, 1, 1, 0, 1;
: 6 : 1, 1, 1, 1, 2, 2, 1, 1, 0, 1;
: 7 : 1, 2, 3, 2, 2, 2, 1, 1, 0, 1;
: 8 : 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1;
: 9 : 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1;
: 10 : 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1;
Columns k=(-1)-10 give:
A239832,
A045931,
A240010,
A240011,
A240012,
A240013,
A240014,
A240015,
A240016,
A240017,
A240018,
A240019.
Row lengths give
A016777(floor(n/2)).
Cf.
A240021 (the same for partitions into distinct parts),
A242618 (the same for parts counted without multiplicity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i)*x^(2*irem(i, 2)-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]*x^(2*Mod[i, 2]-1)]]]; T[n_] := (degree = Exponent[b[n, n], x]; ldegree = -Exponent[b[n, n] /. x -> 1/x, x]; Table[Coefficient[b[n, n], x, i], {i, ldegree, degree}]); Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
-
N=20; q='q+O('q^N);
e(n) = if(n%2!=0, u, 1/u);
gf = 1 / prod(n=1,N, 1 - e(n)*q^n );
V = Vec( gf );
{ for (j=1, #V, \\ print triangle, including leading zeros
for (i=0, N-j, print1(" ")); \\ padding
for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
print();
); }
/* Joerg Arndt, Mar 31 2014 */
A022597
Expansion of Product_{m >= 1} (1 + q^m)^(-2).
Original entry on oeis.org
1, -2, 1, -2, 4, -4, 5, -6, 9, -12, 13, -16, 21, -26, 29, -36, 46, -54, 62, -74, 90, -106, 122, -142, 171, -200, 227, -264, 311, -358, 408, -470, 545, -626, 709, -810, 933, -1062, 1198, -1362, 1555, -1760, 1980, -2238, 2536, -2858, 3205, -3602, 4063, -4560, 5092, -5704, 6400, -7150, 7966
Offset: 0
G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- D. Foata and G.-N. Han, Jacobi and Watson Identities Combinatorially Revisited
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 13.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
Cf.
A089814 (expansion of Product_{k>=1}(1-q^(10k-5))^2).
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */
A284896
Expansion of Product_{k>=1} 1/(1+x^k)^(k^2) in powers of x.
Original entry on oeis.org
1, -1, -3, -6, 0, 11, 42, 63, 73, -45, -267, -720, -1095, -1239, -66, 2794, 8757, 16017, 22885, 19634, -2359, -61979, -161867, -302190, -421971, -432051, -126712, 690578, 2278273, 4584989, 7269985, 8965464, 7515373, -845659, -19930400, -53474765, -100195759
Offset: 0
-
CoefficientList[Series[Product[1/(1 + x^k)^(k^2) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
-
x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017
Showing 1-10 of 96 results.
Comments