cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 96 results. Next

A294261 E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n).

Original entry on oeis.org

1, -1, 1, -7, 49, -301, 2281, -21211, 260737, -3254329, 41086801, -589336111, 9851907121, -170708882917, 3060177746809, -60544788499651, 1298663388032641, -28777111728560881, 665551703689032097, -16413980708818538839, 428253175770218766001
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2017

Keywords

Crossrefs

Main diagonal of A294289.

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A081362(k)*a(n-k)/(n-k)! for n > 0.

A294340 E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n/n).

Original entry on oeis.org

1, -1, 1, -3, 15, -75, 435, -3045, 29505, -305865, 3193785, -36542835, 501892335, -7286043555, 108056360475, -1793622856725, 32996752625025, -620276725767825, 11975531764755825, -249801487147455075, 5592450521376068175, -130966142569782327675
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Crossrefs

Cf. A294261.

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} A081362(k)*a(n-k)/(n-k)! for n > 0.

A000700 Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of replicable function number 96a. - N. J. A. Sloane, Jun 10 2015
For n >= 1, a(n) is the minimal row sum in the character table of the symmetric group S_n. The minimal row sum in the table corresponds to the one-dimensional alternating representation of S_n. The maximal row sum is in sequence A085547. - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003
Also the number of partitions of n into parts != 2 and differing by >= 6 with strict inequality if a part is even. [Alladi]
Let S be the set formed by the partial sums of 1+[2,3]+[2,5]+[2,7]+[2,9]+..., where [2,odd] indicates a choice, e.g., we may have 1+2, or 1+3+2, or 1+3+5+2+9, etc. Then A000700(n) is the number of elements of S that equal n. Also A000700(n) is the same parity as A000041(n) (the partition numbers). - Jon Perry, Dec 18 2003
a(n) is for n >= 2 the number of conjugacy classes of the symmetric group S_n which split into two classes under restriction to A_n, the alternating group. See the G. James - A. Kerber reference given under A115200, p. 12, 1.2.10 Lemma and the W. Lang link under A115198.
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times (these are the conjugates of the partitions of n into distinct odd parts). Example: a(15)=4 because we have [3,3,3,2,2,1,1], [3,2,2,2,2,1,1,1,1], [3,2,2,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
The INVERTi transform of A000009 (number of partitions of n into odd parts starting with offset 1) = (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, ...); = left border of triangle A146061. - Gary W. Adamson, Oct 26 2008
For n even: the sum over all even nonnegative integers, k, such that k^2 < n, of the number of partitions of (n-k^2)/2 into parts of size at most k. For n odd: the sum over all odd nonnegative integers, j, such that j^2 < n, of the number of partitions of (n-j^2)/2 into parts of size at most j. - Graham H. Hawkes, Oct 18 2013
This number is also (the number of conjugacy classes of S_n containing even permutations) - (the number of conjugacy classes of S_n containing odd permutations) = (the number of partitions of n into a number of parts having the same parity as n) - (the number of partitions of n into a number of parts having opposite parity as n) = (the number of partitions of n with largest part having same parity as n) - (the number of partitions with largest part having opposite parity as n). - David L. Harden, Dec 09 2016
a(n) is odd iff n belongs to A052002; that is, Sum_{n>=0} x^A052002(n) == Sum_{n>=0} a(n)*x^n (mod 2). - Peter Bala, Jan 22 2017
Also the number of conjugacy classes of S_n whose members yield unique square roots, i.e., there exists a unique h in S_n such that hh = g for any g in such a conjugacy class. Proof: first note that a permutation's square roots are determined by the product of the square roots of its decomposition into cycles of different lengths. h can only travel to one other cycle before it must "return home" (h^2(x) = g(x) must be in x's cycle), and, because if g^n(x) = x then h^2n(x) = x and h^2n(h(x)) = h(x), this "traveling" must preserve cycle length or one cycle will outpace the other. However, a permutation decomposing into two cycles of the same length has multiple square roots: for example, e = e^2 = (a b)^2, (a b)(c d) = (a c b d)^2 = (a d b c)^2, (a b c)(d e f) = (a d b e c f)^2 = (a e b f c d)^2, etc. This is true for any cycle length so we need only consider permutations with distinct cycle lengths. Finally, even cycle lengths are odd permutations and thus cannot be square, while odd cycle lengths have the unique square root h(x) = g^((n+1)/2)(x). Thus there is a correspondence between these conjugacy classes and partitions into distinct odd parts. - Keith J. Bauer, Jan 09 2024
a(2*n) equals the number of partitions of n into parts congruent to +-2, +-3, +-4 or +-5 mod 16. See Merca, 2015, Corollary 4.3. - Peter Bala, Dec 12 2024

Examples

			T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ...
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A218907.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end;
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0,
           b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1))))
        end:
    a:= n-> b(n, iquo(n+1, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 12 2016
  • Mathematica
    CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *)
    Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *)
    conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}]  (* shows self-conjugate partitions *)
    Table[Length[s[n]], {n, 1, 20}]  (* A000700(n), n >= 1 *)
    (* Peter J. C. Moses, Mar 12 2014 *)
    CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *)
    (O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A000700_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x^2)^2/(f(x)*f(x^4)) ).list()
    A000700_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1)).
G.f.: Sum_{k>=0} x^(k^2)/Product_{i=1..k} (1-x^(2*i)). - Euler (Hardy and Wright, Theorem 345)
G.f.: 1/Product_{i>=1} (1 + (-x)^i). - Jon Perry, May 27 2004
Expansion of chi(q) = (-q; q^2)_oo = f(q) / f(-q^2) = phi(q) / f(q) = f(-q^2) / psi(-q) = phi(-q^2) / f(-q) = psi(q) / f(-q^4), where phi(), chi(), psi(), f() are Ramanujan theta functions.
Sum_{k=0..n} A081360(k)*a(n-k) = 0, for n > 0. - John W. Layman, Apr 26 2000
Euler transform of period-4 sequence [1, -1, 1, 0, ...].
Expansion of q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) in powers of q. - Michael Somos, Jun 11 2004
Asymptotics: a(n) ~ exp(Pi*l_n)/(2*24^(1/4)*l_n^(3/2)) where l_n = (n-1/24)^(1/2) (Ayoub). The asymptotic formula in Ayoub is incorrect, as that would imply faster growth than the total number of partitions. (It was quoted correctly, the book is just wrong, not sure what the correct asymptotic is.) - Edward Early, Nov 15 2002. Right formula is a(n) ~ exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 23 2014
a(n) = (1/n)*Sum_{k = 1..n} (-1)^(k+1)*b(k)*a(n-k), n>1, a(0) = 1, b(n) = A000593(n) = sum of odd divisors of n. - Vladeta Jovovic, Jan 19 2002 [see Theorem 2(a) in N. Robbins's article]
For n > 0: a(n) = b(n, 1) where b(n, k) = b(n-k, k+2) + b(n, k+2) if k < n, otherwise (n mod 2) * 0^(k-n). - Reinhard Zumkeller, Aug 26 2003
Expansion of q^(1/24) * (m * (1 - m) / 16)^(-1/24) in powers of q where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
Given g.f. A(x), B(q) = (1/q)* A(q^3)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v * (u - v^2) * (v - u^2) - (4 * (1 - u*v))^2. - Michael Somos, Jul 16 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
Expansion of q^(1/24)*f(t) in powers of q = exp(Pi*i*t) where f() is Weber's function. - Michael Somos, Oct 18 2007
A069911(n) = a(2*n + 1). A069910(n) = a(2*n).
a(n) = Sum_{k=1..n} (-1)^(n-k) A008284(n,k). - Jeremy L. Martin, Jul 06 2013
a(n) = S(n,1), where S(n,m) = Sum_{k=m..n/2} (-1)^(k+1)*S(n-k,k) + (-1)^(n+1), S(n,n)=(-1)^(n+1), S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
G.f.: Product_{k>0} (1 + x^(2*k-1)) = Product_{k>0} (1 - (-x)^k) / (1 - (-x)^(2*k)) = Product_{k>0} 1 / (1 + (-x)^k). - Michael Somos, Nov 08 2014
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/12) / sqrt(24*n-1) ~ exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(6)/(8*Pi) + Pi/(48*sqrt(6))) / sqrt(n) + (5/128 - 45/(64*Pi^2) + Pi^2/27648) / n). - Vaclav Kotesovec, Jan 08 2017
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Given g.f. A(x), B(q) = (1/q) * A(q^24) / 2^(1/4) satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 + 2*u*v * (1 - (u*v)^4). - Michael Somos, Mar 14 2019
G.f.: Sum_{n >= 0} x^n/Product_{i = 1..n} ( 1 + (-1)^(i+1)*x^i ). - Peter Bala, Nov 30 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x) * Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = ....
G.f.: 1/(1 + x) * Sum_{n >= 0} x^(n-1)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)) * Sum_{n >= 0} x^(n-2)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)*(1 + x^5)) * Sum_{n >= 0} x^(n-3)^2/ Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
a(n) = A046682(n) - A000701(n). See Gupta and also Ballantine et al. - Michel Marcus, Sep 04 2021
G.f.: A(x) = exp( Sum_{k >= 1} (-1)^k/(k*(x^k - x^(-k))) ). - Peter Bala, Dec 23 2021

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A072233 Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002

Keywords

Comments

Regarded as a triangular table, this is another version of the number of partitions of n into k parts, A008284. - Franklin T. Adams-Watters, Dec 18 2006
From Gus Wiseman, Feb 10 2021: (Start)
T(n,k) is also the number of partitions of n with greatest part k, if we assume the greatest part of an empty partition to be 0. Row n = 9 counts the following partitions:
111111111 22221 333 432 54 63 72 81 9
222111 3222 441 522 621 711
2211111 3321 4221 531 6111
21111111 32211 4311 5211
33111 42111 51111
321111 411111
3111111
(End)

Examples

			Table begins (upper left corner = T(0,0)):
1 1 1  1  1  1  1  1  1 ...
0 1 1  1  1  1  1  1  1 ...
0 1 2  2  2  2  2  2  2 ...
0 1 2  3  3  3  3  3  3 ...
0 1 3  4  5  5  5  5  5 ...
0 1 3  5  6  7  7  7  7 ...
0 1 4  7  9 10 11 11 11 ...
0 1 4  8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From _Wolfdieter Lang_, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k  0  1  2  3  4  5  6  7  8  9 10 ...
00   1
01   0  1
02   0  1  1
03   0  1  1  1
04   0  1  2  1  1
05   0  1  2  2  1  1
06   0  1  3  3  2  1  1
07   0  1  3  4  3  2  1  1
08   0  1  4  5  5  3  2  1  1
09   0  1  4  7  6  5  3  2  1  1
10   0  1  5  8  9  7  5  3  2  1  1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From _Gus Wiseman_, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
  9  54  333  3222  22221  222111  2211111  21111111  111111111
     63  432  3321  32211  321111  3111111
     72  441  4221  33111  411111
     81  522  4311  42111
         531  5211  51111
         621  6111
         711
(End)
		

Crossrefs

Sum of antidiagonal entries T(n, k) with n+k=m equals A000041(m).
Alternating row sums are A081362.
Cf. A008284.
The version for factorizations is A316439.
The version for set partitions is A048993/A080510.
The version for strict partitions is A008289/A059607.
A047993 counts balanced partitions, ranked by A106529.
A063995/A105806 count partitions by Dyson rank.

Programs

  • Mathematica
    Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015

Formula

T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012

Extensions

Corrected by Franklin T. Adams-Watters, Dec 18 2006

A048272 Number of odd divisors of n minus number of even divisors of n.

Original entry on oeis.org

1, 0, 2, -1, 2, 0, 2, -2, 3, 0, 2, -2, 2, 0, 4, -3, 2, 0, 2, -2, 4, 0, 2, -4, 3, 0, 4, -2, 2, 0, 2, -4, 4, 0, 4, -3, 2, 0, 4, -4, 2, 0, 2, -2, 6, 0, 2, -6, 3, 0, 4, -2, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 6, -5, 4, 0, 2, -2, 4, 0, 2, -6, 2, 0, 6, -2, 4, 0, 2, -6, 5, 0, 2, -4, 4, 0, 4, -4, 2, 0, 4, -2, 4
Offset: 1

Views

Author

Keywords

Comments

abs(a(n)) = (1/2) * (number of pairs (i,j) satisfying n = i^2 - j^2 and -n <= i,j <= n). - Benoit Cloitre, Jun 14 2003
As A001227(n) is the number of ways to write n as the difference of 3-gonal numbers, a(n) describes the number of ways to write n as the difference of e-gonal numbers for e in {0,1,4,8}. If pe(n):=(1/2)*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 4*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=1, 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e in {0,4} and for a(n) itself is a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=8. (Same for e=-1 see A035218.) - Volker Schmitt (clamsi(AT)gmx.net), Nov 09 2004
An argument by Gareth McCaughan suggests that the average of this sequence is log(2). - Hans Havermann, Feb 10 2013 [Supported by a graph. - Vaclav Kotesovec, Mar 01 2023]
From Keith F. Lynch, Jan 20 2024: (Start)
a(n) takes every possible integer value, positive, negative, and zero. Proof: For all nonnegative integers k, a(3^k) = 1+k, a(2^k) = 1-k.
a(n) takes every possible integer value except 1 and -1 infinitely many times. Proof: a(o^(k-1)) = k and a(4*o^(k-1)) = -k for all positive integers k and odd primes o, of which there are infinitely many. a(n) = 0 iff n = 2 (mod 4). a(n) = 1 iff n = 1. a(n) = -1 iff n = 4.
a(n) takes prime value p only for n = o^(p-1), where o is any odd prime.
Terms have a simple pattern that repeats with a period of 4: Positive, zero, positive, negative.
(End)
Inverse Möbius transform of (-1)^(n+1). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(20) = -2 because 20 = 2^2*5^1 and (1-2)*(1+1) = -2.
G.f. = x + 2*x^3 - x^4 + 2*x^5 + 2*x^7 - 2*x^8 + 3*x^9 + 2*x^11 - 2*x^12 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), first formula.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 97, 7(ii).

Crossrefs

Cf. A048298. A diagonal of A060184.
First differences of A059851.
Indices of records: A053624 (highs), A369151 (lows).

Programs

  • Haskell
    a048272 n = a001227 n - a183063 n  -- Reinhard Zumkeller, Jan 21 2012
    
  • Magma
    [&+[(-1)^(d+1):d in Divisors(n)] :n in [1..95] ]; // Marius A. Burtea, Aug 10 2019
  • Maple
    add(x^n/(1+x^n), n=1..60): series(%,x,59);
    A048272 := proc(n)
        local a;
        a := 1 ;
        for pfac in ifactors(n)[2] do
            if pfac[1] = 2 then
                a := a*(1-pfac[2]) ;
            else
                a := a*(pfac[2]+1) ;
            end if;
        end do:
        a ;
    end proc: # Schmitt, sign corrected R. J. Mathar, Jun 18 2016
    # alternative Maple program:
    a:= n-> -add((-1)^d, d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 28 2018
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
    dif[n_]:=Module[{divs=Divisors[n]},Count[divs,?OddQ]-Count[ divs, ?EvenQ]]; Array[dif,100] (* Harvey P. Dale, Aug 21 2011 *)
    a[n]:=Sum[-(-1)^d,{d,Divisors[n]}] (* Steven Foster Clark, May 04 2018 *)
    f[p_, e_] := If[p == 2, 1 - e, 1 + e]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 09 2022 *)
  • PARI
    {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^d))}; /* Michael Somos, Jul 22 2006 */
    
  • PARI
    N=17; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j); \\ log case
    s=-log(prod(j=1,N,(1+x^j)^(1/j)));
    s=serconvol(s,c)
    v=Vec(s) \\ Joerg Arndt, May 03 2008
    
  • PARI
    a(n)=my(o=valuation(n,2),f=factor(n>>o)[,2]);(1-o)*prod(i=1,#f,f[i]+1) \\ Charles R Greathouse IV, Feb 10 2013
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,(1-2*X)/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    {a(n) = my(d = n -> if(frac(n), 0, numdiv(n))); if( n<1, 0, if( n%4, 1, -1) * (d(n) - 2*d(n/2) + 2*d(n/4)))}; /* Michael Somos, Aug 11 2017 */
    

Formula

Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n) = Sum_{n >= 1} (-1)^(n-1)*x^n/(1-x^n). Expand Sum 1/(1+x^n) in powers of 1/x.
If n = 2^p1*3^p2*5^p3*7^p4*11^p5*..., a(n) = (1-p1)*Product_{i>=2} (1+p_i).
Multiplicative with a(2^e) = 1 - e and a(p^e) = 1 + e if p > 2. - Vladeta Jovovic, Jan 27 2002
a(n) = (-1)*Sum_{d|n} (-1)^d. - Benoit Cloitre, May 12 2003
Moebius transform is period 2 sequence [1, -1, ...]. - Michael Somos, Jul 22 2006
G.f.: Sum_{k>0} -(-1)^k * x^(k^2) * (1 + x^(2*k)) / (1 - x^(2*k)) [Ramanujan]. - Michael Somos, Jul 22 2006
Equals A051731 * [1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 07 2007
From Reinhard Zumkeller, Jan 21 2012: (Start)
a(n) = A001227(n) - A183063(n).
a(A008586(n)) < 0; a(A005843(n)) <= 0; a(A016825(n)) = 0; a(A042968(n)) >= 0; a(A005408(n)) > 0. (End)
a(n) = Sum_{k=0..n} A081362(k)*A015723(n-k). - Mircea Merca, Feb 26 2014
abs(a(n)) = A112329(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
From Peter Bala, Jan 07 2015: (Start)
Logarithmic g.f.: log( Product_{n >= 1} (1 + x^n)^(1/n) ) = Sum_{n >= 1} a(n)*x^n/n.
a(n) = A001227(n) - A183063(n). By considering the logarithmic generating functions of these three sequences we obtain the identity
( Product_{n >= 0} (1 - x^(2*n+1))^(1/(2*n+1)) )^2 = Product_{n >= 1} ( (1 - x^n)/(1 + x^n) )^(1/n). (End)
Dirichlet g.f.: zeta(s)*eta(s) = zeta(s)^2*(1-2^(-s+1)). - Ralf Stephan, Mar 27 2015
a(2*n - 1) = A099774(n). - Michael Somos, Aug 12 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) - x^k)^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) + x^k)^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
a(n) = 2*A000005(2n) - 3*A000005(n). - Ridouane Oudra, Oct 15 2019
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = 2*log(2)-1. - Amiram Eldar, Mar 01 2023

Extensions

New definition from Vladeta Jovovic, Jan 27 2002

A304969 Expansion of 1/(1 - Sum_{k>=1} q(k)*x^k), where q(k) = number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 5, 11, 25, 57, 129, 292, 662, 1500, 3398, 7699, 17443, 39519, 89536, 202855, 459593, 1041267, 2359122, 5344889, 12109524, 27435660, 62158961, 140828999, 319065932, 722884274, 1637785870, 3710611298, 8406859805, 19046805534, 43152950024, 97768473163
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Invert transform of A000009.
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 11 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{1},{2,2}} {{1,1},{2,2}}
{{2},{1,1}} {{1},{2,2,2}}
{{1},{2},{3}} {{2},{1,1,1}}
{{1},{2},{1,1}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{3},{2,2}}
{{2},{3},{1,1}}
{{1},{2},{3},{4}}
The non-strict version is A055887.
The strongly normal non-strict version is A063834.
The strongly normal version is A270995.
(End)

Examples

			From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose a strict integer partition of each part of an integer composition of n. The a(1) = 1 through a(4) = 11 choices are:
  ((1))  ((2))     ((3))        ((4))
         ((1)(1))  ((21))       ((31))
                   ((1)(2))     ((1)(3))
                   ((2)(1))     ((2)(2))
                   ((1)(1)(1))  ((3)(1))
                                ((1)(21))
                                ((21)(1))
                                ((1)(1)(2))
                                ((1)(2)(1))
                                ((2)(1)(1))
                                ((1)(1)(1)(1))
(End)
		

Crossrefs

Row sums of A308680.
The unordered version is A089259, non-strict A001970 (row-sums of A061260).
For partitions instead of compositions we have A270995, non-strict A063834.
A000041 counts integer partitions, strict A000009.
A072233 counts partitions by sum and length.
Cf. A279784.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(j)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - Sum[PartitionsQ[k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(2 - Product[1 + x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 32; CoefficientList[Series[1/(2 - 1/QPochhammer[x, x^2]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PartitionsQ[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A000009(k)*x^k).
G.f.: 1/(2 - Product_{k>=1} (1 + x^k)).
G.f.: 1/(2 - Product_{k>=1} 1/(1 - x^(2*k-1))).
G.f.: 1/(2 - exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)))).
a(n) ~ c / r^n, where r = 0.441378990861652015438479635503868737167721352874... is the root of the equation QPochhammer[-1, r] = 4 and c = 0.4208931614610039677452560636348863586180784719323982664940444607322... - Vaclav Kotesovec, May 23 2018

A240009 Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, -floor(n/2)+(n mod 2)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 4, 7, 7, 6, 8, 6, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 30 2014

Keywords

Comments

T(n,k) = T(n+k,-k).
Sum_{k=-floor(n/2)+(n mod 2)..-1} T(n,k) = A108949(n).
Sum_{k=-floor(n/2)+(n mod 2)..0} T(n,k) = A171966(n).
Sum_{k=1..n} T(n,k) = A108950(n).
Sum_{k=0..n} T(n,k) = A130780(n).
Sum_{k=-1..1} T(n,k) = A239835(n).
Sum_{k<>0} T(n,k) = A171967(n).
T(n,-1) + T(n,1) = A239833(n).
Sum_{k=-floor(n/2)+(n mod 2)..n} k * T(n,k) = A209423(n).
Sum_{k=-floor(n/2)+(n mod 2)..n} (-1)^k*T(n,k) = A081362(n) = (-1)^n*A000700(n).

Examples

			T(5,-1) = 1: [2,2,1].
T(5,0) = 2: [4,1], [3,2].
T(5,1) = 1: [5].
T(5,2) = 1: [2,1,1,1].
T(5,3) = 1: [3,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
: n\k : -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9 10 ...
+-----+----------------------------------------------------
:  0  :                 1;
:  1  :                    1;
:  2  :              1, 0, 0, 1;
:  3  :                 1, 1, 0, 1;
:  4  :           1, 1, 0, 1, 1, 0, 1;
:  5  :              1, 2, 1, 1, 1, 0, 1;
:  6  :        1, 1, 1, 1, 2, 2, 1, 1, 0, 1;
:  7  :           1, 2, 3, 2, 2, 2, 1, 1, 0, 1;
:  8  :     1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1;
:  9  :        1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1;
: 10  :  1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1;
		

Crossrefs

Row sums give A000041.
T(2n,n) gives A002865.
T(4n,2n) gives A182746.
T(4n+2,2n+1) gives A182747.
Row lengths give A016777(floor(n/2)).
Cf. A240021 (the same for partitions into distinct parts), A242618 (the same for parts counted without multiplicity).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i)*x^(2*irem(i, 2)-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]*x^(2*Mod[i, 2]-1)]]]; T[n_] := (degree = Exponent[b[n, n], x]; ldegree = -Exponent[b[n, n] /. x -> 1/x, x]; Table[Coefficient[b[n, n], x, i], {i, ldegree, degree}]); Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
  • PARI
    N=20; q='q+O('q^N);
    e(n) = if(n%2!=0, u, 1/u);
    gf = 1 / prod(n=1,N, 1 - e(n)*q^n );
    V = Vec( gf );
    { for (j=1, #V,  \\ print triangle, including leading zeros
        for (i=0, N-j, print1("   "));  \\ padding
        for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
        print();
    ); }
    /* Joerg Arndt, Mar 31 2014 */

Formula

G.f.: 1 / prod(n>=1, 1 - e(n)*q^n ) = 1 + sum(n>=1, e(n)*q^n / prod(k=1..n, 1-e(k)*q^k) ) where e(n) = u if n odd, otherwise 1/u; see Pari program. [Joerg Arndt, Mar 31 2014]

A022597 Expansion of Product_{m >= 1} (1 + q^m)^(-2).

Original entry on oeis.org

1, -2, 1, -2, 4, -4, 5, -6, 9, -12, 13, -16, 21, -26, 29, -36, 46, -54, 62, -74, 90, -106, 122, -142, 171, -200, 227, -264, 311, -358, 408, -470, 545, -626, 709, -810, 933, -1062, 1198, -1362, 1555, -1760, 1980, -2238, 2536, -2858, 3205, -3602, 4063, -4560, 5092, -5704, 6400, -7150, 7966
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
McKay-Thompson series of class 24J for the Monster group.

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 4*x^4 - 4*x^5 + 5*x^6 - 6*x^7 + 9*x^8 + ...
T24J = 1/q - 2*q^11 + q^23 - 2*q^35 + 4*q^47 - 4*q^59 + 5*q^71 - 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Cf. A089814 (expansion of Product_{k>=1}(1-q^(10k-5))^2).
Column k=2 of A286352.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}]^-2, {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^2, n))}; /* Michael Somos, Sep 10 2005 */

Formula

Expansion of q^(1/12) * (eta(q) / eta(q^2))^2 in powers of q.
Euler transform of period 2 sequence [ -2, 0, ...]. - Michael Somos, Sep 10 2005
Expansion of chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022567.
G.f.: Product_{k>0} (1 + x^k)^-2.
Convolution square of A081362. Convolution inverse of A022567.
a(n) = (-1)^n * A073252(n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A284896 Expansion of Product_{k>=1} 1/(1+x^k)^(k^2) in powers of x.

Original entry on oeis.org

1, -1, -3, -6, 0, 11, 42, 63, 73, -45, -267, -720, -1095, -1239, -66, 2794, 8757, 16017, 22885, 19634, -2359, -61979, -161867, -302190, -421971, -432051, -126712, 690578, 2278273, 4584989, 7269985, 8965464, 7515373, -845659, -19930400, -53474765, -100195759
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^2, g(n) = -1. - Seiichi Manyama, Nov 15 2017

Crossrefs

Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), this sequence (m=2), A284897 (m=3), A284898 (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^2) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078307(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(1 + x^k)/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 30 2018
Showing 1-10 of 96 results. Next