cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A327852 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.

Original entry on oeis.org

1, -1, -1, 1, -1, 1, 1, -3, 1, 2, 0, 2, -2, -2, -1, 3, 1, -5, 2, 0, 0, 8, -4, -7, 5, -2, 0, 1, -8, 0, 12, 2, -3, -1, -7, 9, 4, -7, -7, -6, 10, 9, 2, -6, -14, 15, 3, -15, 19, -30, 6, 37, -31, 10, 9, -23, 20, 4, -29, 4, 14, 4, -13, 23, -14, -19, 39, -29, -23, 35, 0, -34, 48
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2019

Keywords

Crossrefs

Product_{k>=1} (1 - x^k)^(Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A288007 (b=4), A327688 (b=5).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7))) / ((1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5)))).
G.f.: Product_{k>=1} (1-x^k)^A035185(k).

A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 144, -226, 346, -522, 777, -1138, 1648, -2362, 3348, -4704, 6554, -9056, 12425, -16932, 22922, -30848, 41282, -54946, 72768, -95914, 125842, -164402, 213901, -277204, 357904, -460448, 590330, -754368, 960948, -1220370
Offset: 0

Views

Author

Michael Somos, Dec 22 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - Wolfdieter Lang, Jul 09 2016

Examples

			G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...
G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* Michael Somos, Jul 08 2011 *)
    QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Apr 19 2017 *)
  • PARI
    {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* Michael Somos, Sep 01 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

Formula

a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - Vladeta Jovovic, Dec 24 2002
Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.
Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.
Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [-2, 4, -2, 0, ...].
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - Michael Somos, Mar 19 2004
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.
Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - Michael Somos, Sep 01 2005
Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.
Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).
G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - Michael Somos, Apr 20 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - Thomas Baruchel, May 14 2018
A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - Peter Bala, Sep 23 2023

A069910 Expansion of Product_{i in A069908} 1/(1 - x^i).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 23, 26, 33, 37, 46, 52, 63, 72, 87, 98, 117, 133, 157, 178, 209, 236, 276, 312, 361, 408, 471, 530, 609, 686, 784, 881, 1004, 1126, 1279, 1433, 1621, 1814, 2048, 2286, 2574, 2871, 3223, 3590, 4022, 4472, 5000
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Number 39 of the 130 identities listed in Slater 1952.
Number of partitions of 2*n into distinct odd parts. - Vladeta Jovovic, May 08 2003

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ...
G.f. = q^-1 + q^95 + q^143 + 2*q^191 + 2*q^239 + 3*q^287 + 3*q^335 + ...
		

References

  • M. D. Hirschhorn, The Power of q, Springer, 2017. Chapter 19, Exercises p. 173.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0$2, 1$4, 0$5, 1$4, 0][irem(d, 16)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    max = 56; p = Product[1/(1-x^i), {i, Select[Range[max], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&]}]; s = Series[p, {x, 0, max}]; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Apr 09 2014 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(8*k-1))*(1-x^(8*k-7))*(1-x^(8*k))*(1-x^(16*k-6))*(1-x^(16*k-10))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }[[ Mod[k, 16] + 1]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 14 2016 *)
  • PARI
    {a(n) = my(A); if( n<0,0, n=2*n; A = x * O(x^n); polcoeff( eta(-x + A) / eta(x^2 + A), n))}; /* Michael Somos, Apr 11 2004 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=0, S, q^(2*n^2) / prod(k=1, 2*n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0][k%16 + 1]), n))}; /* Michael Somos, Apr 14 2016 */

Formula

Euler transform of period 16 sequence [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: Sum_{n>=0} q^(2*n^2) / Product_{k=1..2*n} (1 - q^k). - Joerg Arndt, Apr 01 2014
a(n) ~ exp(sqrt(n/3)*Pi) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
Expansion of f(x^3, x^5) / f(-x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Apr 14 2016
a(n) = A000700(2*n).
a(n) = A027356(4n+1,2n+1). - Alois P. Heinz, Oct 28 2019
From Peter Bala, Feb 08 2021: (Start)
G.f.: A(x) = Product_{n >= 1} (1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)).
The 2 X 2 matrix Product_{k >= 0} [1, x^(2*k+1); x^(2*k+1), 1] = [A(x^2), x*B(x^2); x*B(x)^2, A(x^2)], where B(x) is the g.f. of A069911.
A(x^2) + x*B(x^2) = A^2(-x) + x*B^2(-x) = Product_{k >= 0} 1 + x^(2*k+1), the g.f. of A000700.
A^2(x) + x*B^2(x) is the g.f. of A226622.
(A^2(x) + x*B^2(x))/(A^2(x) - x*B^2(x)) is the g.f. of A208850.
A^4(sqrt(x)) - x*B^4(sqrt(x)) is the g.f. of A029552.
A(x)*B(x) is the g.f. of A226635; A(-x)/B(-x) is the g.f. of A111374; B(-x)/A(-x) is the g.f. of A092869. (End)

A093709 Characteristic function of squares or twice squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 11 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Partial sums of a(n) for n >= 1 are A071860(n+1). - Jaroslav Krizek, Oct 18 2009
For n > 0, this is also the number of different triangular polyabolos that can be formed from n congruent isosceles right triangles (illustrated at A245676). - Douglas J. Durian, Sep 10 2017

Examples

			G.f. = 1 + q + q^2 + q^4 + q^8 + q^9 + q^16 + q^18 + q^25 + q^32 + q^36 + q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1/2), 104); A[1] + A[2]; /* Michael Somos, Jan 01 2015 */
  • Maple
    seq(`if`(issqr(n) or issqr(n/2),1,0), n=0..100); # Robert Israel, Apr 05 2016
  • Mathematica
    Table[Boole[IntegerQ[Sqrt[n]] || IntegerQ[Sqrt[2*n]]], {n, 0, 104}] (* Jean-François Alcover, Dec 05 2013 *)
    a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors[ n]] || OddQ [ Length @ Divisors[ 2 n]]]]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}]; (* Michael Somos, Jan 01 2015 *)
  • PARI
    {a(n) = issquare(n) || issquare(2*n)};
    

Formula

Expansion of psi(q^4) * f(-q^3, -q^5) / f(-q, -q^7) in powers of q where psi(), f() are Ramanujan theta functions.
Expansion of f(-q^3, -q^5)^2 / psi(-q) in powers of q where psi(), f() are Ramanujan theta functions. - Michael Somos, Jan 01 2015
Euler transform of period 8 sequence [ 1, 0, -1, 1, -1, 0, 1, -1, ...].
G.f. A(x) satisfies A(x^2) = (A(x) + A(-x)) / 2. a(2*n) = a(n).
Given g.f. A(x), then A(x) / A(x^2) = 1 + x*A092869(x^2).
Given g.f. A(x), then B(x) = A(x^2) / A(x) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 + v - 2(u + u^2)*v + 2*(u*v)^2.
Multiplicative with a(0) = a(2^e) = 1, a(p^e) = 1 if e even, 0 otherwise.
a(n) = A053866(n) unless n=0. Characteristic function of A028982 union 0.
G.f.: (theta_3(q) + theta_3(q^2)) / 2 = 1 + (Sum_{k>0} x^(k^2) + x^(2*k^2)).
Dirichlet g.f.: zeta(2*s) * (1 + 2^-s).
For n>0: a(n) = A010052(n) + A010052(A004526(n))*A059841(n). - Reinhard Zumkeller, Nov 14 2009
a(n) = A000035(A000203(n)) = A000035(A000593(n)) = A000035(A001227(n)), if n>0. - Omar E. Pol, Apr 05 2016
Sum_{k=1..n} a(k) ~ (1 + 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020

A111374 Series expansion of the reciprocal of the Goellnitz-Gordon continued fraction.

Original entry on oeis.org

1, 1, 1, 0, 0, -1, -1, 0, 1, 2, 1, 0, -2, -3, -2, 0, 3, 4, 4, 0, -4, -6, -5, 0, 5, 9, 6, 0, -8, -12, -9, 0, 12, 16, 13, 0, -14, -22, -17, 0, 18, 29, 21, 0, -26, -38, -28, 0, 34, 50, 39, 0, -42, -64, -49, 0, 53, 82, 60, 0, -70, -105, -78, 0, 90, 132, 101, 0, -110, -166, -125, 0, 137, 208, 153, 0, -174, -258, -192, 0, 217
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 15 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014
A generator (Hauptmodul) of the function field associated with the intersection of congruence subgroups Gamma(2) and Gamma_1(8). [Yang 2004] - Michael Somos, Aug 07 2014

Examples

			G.f. = 1 + x + x^2 - x^5 - x^6 + x^8 + 2*x^9 + x^10 - 2*x^12 - 3*x^13 - 2*x^14 + ...
G.f. = 1/q + q + q^3 - q^9 - q^11 + q^15 + 2*q^17 + q^19 - 2*q^23 - 3*q^25 + ...
		

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); t2:=qf(q^3,q^8)*qf(q^5,q^8)/(qf(q,q^8)*qf(q^7,q^8)); series(%,q,M); seriestolist(%);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 - x^k)^-KroneckerSymbol[ 2, k], {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8] / (QPochhammer[ x, x^8] QPochhammer[ x^7, x^8] ), {x, 0, n}]; (* Michael Somos, Jul 08 2012 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x] + EllipticTheta[ 3, 0, x^2]) / EllipticTheta[ 2, 0, x^2], {x, 0, n - 1/2}]; (* Michael Somos, Jul 08 2012 *)
  • PARI
    {a(n) = my(A, A2); if( n<0, 0, A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( (A^2 + A2) / (2 * A^2 * A2^2 ), n))}; /* Michael Somos, Mar 08 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-kronecker( 2, k)), n))}; /* Michael Somos, Jul 08 2012 */

Formula

Expansion of 1 + x + x^2/(1 + x^3 + x^4/(1 + x^5 + x^6/(1 + x^7+ ...))) in powers of x.
Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is qf(q^3, q^8)*qf(q^5, q^8)/(qf(q, q^8)*qf(q^7, q^8)).
Expansion of (phi(x) + phi(x^2)) / (2 * psi(x^4)) = 2 * x * psi(x^4) / (phi(x) - phi(x^2)) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 15 2006
Expansion of f(-x^3, -x^5) / f(-x, -x^7) in powers of x where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Mar 08 2012
Euler transform of period 8 sequence [ 1, 0, -1, 0, -1, 0, 1, 0, ...]. - Michael Somos, Mar 08 2012
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (v - 1) - v * (v + 1). - Michael Somos, Oct 22 2013
a(4*n + 3) = 0. a(4*n + 1) = A083365(n). Convolution inverse of A092869.

A091188 G.f. A(x) satisfies both A(-x)*A(x) = A(x^2) and xA(x)^2 = B(xA(x^2)) where B(x) = x*(1+x)/(1-x).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 10, 12, 23, 31, 58, 79, 145, 207, 374, 540, 964, 1427, 2522, 3775, 6626, 10050, 17532, 26811, 46561, 71795, 124188, 192661, 332228, 518303, 891340, 1396902, 2396912, 3771822, 6459202, 10199912, 17437727, 27622807, 47152952
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2004

Keywords

Comments

This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091190 and A091200.

Examples

			1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 + 12*x^8 + 23*x^9 + ...
q + q^3 + q^5 + 2*q^7 + 2*q^9 + 4*q^11 + 5*q^13 + 10*q^15 + 12*q^17 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = x * subst(A, x, x^2); A = (A *(1 + A) /(1 - A) / x)^(1/2)); polcoeff(A, n))}

Formula

Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) were f(u, v) = u^2 * (1 - v) - v * (1 + v). - Michael Somos, Aug 02 2011

A226559 Expansion of f(-x^1, -x^7) * f(-x^2, -x^6) / (f(-x^3, -x^5) * f(-x^4, -x^4)) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, -1, 2, 1, -2, -2, 2, 4, -4, -5, 6, 6, -7, -9, 10, 13, -15, -17, 20, 21, -25, -28, 32, 39, -43, -49, 56, 60, -69, -78, 86, 101, -112, -125, 142, 153, -172, -192, 212, 241, -266, -295, 328, 357, -397, -438, 482, 540, -592, -652, 720, 781, -862, -946
Offset: 0

Views

Author

Michael Somos, Jun 10 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^2 + 2*x^3 + x^4 - 2*x^5 - 2*x^6 + 2*x^7 + 4*x^8 - 4*x^9 + ...
G.f. = q^3 - q^7 - q^11 + 2*q^15 + q^19 - 2*q^23 - 2*q^27 + 2*q^31 + 4*q^35 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{0, 1, 1, -1, -2, -1, 1, 1}[[ Mod[k, 8] + 1]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^[ 0, 1, 1, -1, -2, -1, 1, 1][k%8 + 1]), n))};

Formula

Expansion of (f(-x^1, -x^7) / f(-x^3, -x^5)) * (psi(-x^2) / phi(-x^4)) in powers of x where psi(), phi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [-1, -1, 1, 2, 1, -1, -1, 0, ...].
Given g.f. A(x) then B(q) = q^3 * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v - u^2)^3 - 4 * u^2 * v^3 * (2*v - u^2) * (2 + v^2 - u^2*v).
a(n) = -A092869(2*n + 1) = A230534(2*n + 1).

A230534 Expansion of phi(x) / phi(x^2) * f(-x, -x^7) / f(-x^3, -x^5) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -4, -1, 11, -1, -20, 2, 34, 1, -64, -2, 113, -2, -180, 2, 284, 4, -452, -4, 698, -5, -1044, 6, 1545, 6, -2276, -7, 3308, -9, -4724, 10, 6680, 13, -9408, -15, 13130, -17, -18112, 20, 24821, 21, -33864, -25, 45882, -28, -61696, 32, 82514, 39, -109892, -43
Offset: 0

Views

Author

Michael Somos, Oct 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 4*x^2 - x^3 + 11*x^4 - x^5 - 20*x^6 + 2*x^7 + 34*x^8 + ...
G.f. = q + q^3 - 4*q^5 - q^7 + 11*q^9 - q^11 - 20*q^13 + 2*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 q^(-1/2) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q]^2 (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^6) * sum( k=1, sqrtint(n+1), x^k^2 - x^(2*k^2), x * A) / x, n))};

Formula

Expansion of (phi(x) / psi(x^2)^2) * (phi(x) - phi(x^2)) / (2*x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1) * phi(q^2) * (phi(q^2) - phi(q^4)) / (phi(q^4) * (phi(q) - phi(q^4))) in powers of q^2 where phi() is a Ramanujan theta function.
Euler transform of period 8 sequence [1, -5, 3, 2, 3, -5, 1, 0, ...].
a(2*n + 1) = A226559(n).
Convolution of A080015 and A092869.

A230535 Expansion of q * (f(-q, -q^7) / f(-q^3, -q^5))^2 in powers of q where f(,) is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -2, 1, 2, -4, 4, -1, -6, 11, -8, -1, 12, -20, 16, 2, -22, 34, -30, 1, 40, -64, 52, -2, -68, 113, -88, -2, 112, -180, 144, 2, -182, 284, -228, 4, 286, -452, 356, -4, -440, 698, -544, -5, 668, -1044, 816, 6, -996, 1545, -1210, 6, 1464, -2276, 1768, -7, -2128
Offset: 1

Views

Author

Michael Somos, Oct 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + q^3 + 2*q^4 - 4*q^5 + 4*q^6 - q^7 - 6*q^8 + 11*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q Product[ (1 - q^k)^KroneckerSymbol[ 8, k], {k, n}]^2, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^2] / (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]))^2, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q, q^8] QPochhammer[ q^7, q^8] / (QPochhammer[ q^3, q^8] QPochhammer[ q^5, q^8]))^2, {q, 0, n}];
  • PARI
    {a(n) = local(A, A2); if( n<2, n==1, n--; A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( (2 * A^2 * A2^2 / (A^2 + A2))^2, n))};

Formula

Euler transform of period 8 sequence [ -2, 0, 2, 0, 2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - u^2) * (1 - v) - 4*u*v.
G.f.: x * (Product_{k>=0} (1 - x^(8*k + 1)) * (1 - x^(8*k + 7)) / ((1 - x^(8*k + 3)) * (1 - x^(8*k + 5))))^2.
a(2*n) = -2 * A224216(n). a(2*n + 1) = A230534(n).
Convolution square of A092869.
Empirical: Sum_{n>=1} a(n)/exp(Pi*n) = 7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)). - Simon Plouffe, Mar 02 2021

A292801 Expansion of 1/(1 + x^2 + x^3/(1 + x^5 + x^7/(1 + x^11 + x^13/(1 + ... + x^prime(2*k)/(1 + x^prime(2*k+1) + ...))))), a continued fraction.

Original entry on oeis.org

1, 0, -1, -1, 1, 2, 0, -3, -1, 3, 4, -3, -7, -1, 11, 6, -10, -17, 8, 26, 8, -40, -28, 33, 71, -19, -99, -49, 141, 125, -99, -285, 30, 371, 253, -492, -541, 263, 1122, 57, -1352, -1197, 1672, 2260, -548, -4345, -871, 4804, 5387, -5475, -9182, 294, 16526, 5725, -16587, -23366
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[1/(1 + x^2 + ContinuedFractionK[x^Prime[2 k], 1 + x^Prime[2 k + 1], {k, 1, nmax}]), {x, 0, nmax}], x]
Showing 1-10 of 15 results. Next