A327852 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.
1, -1, -1, 1, -1, 1, 1, -3, 1, 2, 0, 2, -2, -2, -1, 3, 1, -5, 2, 0, 0, 8, -4, -7, 5, -2, 0, 1, -8, 0, 12, 2, -3, -1, -7, 9, 4, -7, -7, -6, 10, 9, 2, -6, -14, 15, 3, -15, 19, -30, 6, 37, -31, 10, 9, -23, 20, 4, -29, 4, 14, 4, -13, 23, -14, -19, 39, -29, -23, 35, 0, -34, 48
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))
Formula
G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7))) / ((1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5)))).
G.f.: Product_{k>=1} (1-x^k)^A035185(k).
Comments