cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A327851 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A111374.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 8, 12, 15, 19, 24, 30, 36, 47, 57, 74, 88, 112, 130, 160, 190, 232, 277, 333, 399, 471, 554, 656, 768, 908, 1060, 1256, 1452, 1702, 1968, 2294, 2646, 3068, 3549, 4093, 4710, 5418, 6211, 7121, 8138, 9331, 10625, 12150, 13817, 15749, 17858, 20290, 23000, 26054
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2019

Keywords

Comments

a(n) > 0.

Crossrefs

Convolution inverse of A327852.
Product_{k>=1} (1 - x^k)^(- Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A107742 (b=4), A327716 (b=5).

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[QPochhammer[x^(8*j - 3)] * QPochhammer[x^(8*j - 5)]/(QPochhammer[x^(8*j - 7)] * QPochhammer[x^(8*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5))) / ((1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7)))).
G.f.: Product_{k>=1} (1-x^k)^(-A035185(k)).

A092869 Series expansion of the Ramanujan-Goellnitz-Gordon continued fraction.

Original entry on oeis.org

1, -1, 0, 1, -1, 1, 0, -2, 2, -1, 0, 2, -3, 2, 0, -2, 4, -4, 0, 4, -6, 5, 0, -6, 9, -6, 0, 7, -12, 9, 0, -10, 16, -13, 0, 15, -22, 17, 0, -20, 29, -21, 0, 25, -38, 28, 0, -32, 50, -39, 0, 43, -64, 49, 0, -56, 82, -60, 0, 69, -105, 78, 0, -86, 132, -101, 0, 112, -166, 125, 0, -142, 208, -153, 0, 172, -258, 192, 0
Offset: 0

Views

Author

Michael Somos, Mar 07 2004; corrected Jun 09 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1876) writes "XIII. tan(pi/16) = (e^(-pi/2) - e^(-3 pi/2) - e^(-15 pi/2) + e^(-21 pi/2) + e^(-45 pi/2) - &c.) / (1 - e^(-6 pi/2) - e^(-10 pi/2) + e^(-28 pi/2) + e^(-36 pi/2) - &c.), ..." where the numerator is q * f( -q^2, -q^14) and denominator is f( -q^6, -q^10) where q = e^(-pi/2). - Michael Somos, Jun 22 2012
Berndt writes "[...] v = q^(1/2) f(-q,-q^7) / f(-q^3,-q^5). Then v = q^(1/2) / (1 + q + q^2 / (1 + q^3 + q^4 / (1 + q^5 + q^6 / (1 + x^7 + ...)))). (1.1)". - Michael Somos, Jul 09 2012
Jacobi writes "(7.) (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2(1+k'))) = (q - q^3 - q^15 + q^21 + q^45 - q^55 - ...) / (1 - q^6 - q^10 + q^28 + q^36 - q^66 - ...)." - Michael Somos, Sep 11 2012

Examples

			G.f. = 1 - x + x^3 - x^4 + x^5 - 2*x^7 + 2*x^8 - x^9 + 2*x^11 - 3*x^12 + ...
G/f. = q - q^3 + q^7 - q^9 + q^11 - 2*q^15 + 2*q^17 - q^19 + 2*q^23 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see p. 221 Entry 1(ii), eq. (1.1).
  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), 111-112. see Eq. XIII
  • C. G. J. Jacobi, Über die Zur Numerischen Berechnung der Elliptischen Functionen Zweckmaessigsten Formeln, Crelle Bd. 26 (1843), 93-114 = Gesammelte Werke, Bd. 1, 1881, 343-368.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1/2), 159); LS := LaurentSeriesRing( RationalField()); A[3] / A[2]; /* Michael Somos, Aug 31 2018 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^8] QPochhammer[ x^7, x^8] /(QPochhammer[ x^3, x^8] QPochhammer[ x^5, x^8]), {x, 0, n}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2] / (EllipticTheta[ 3, 0, x] + EllipticTheta[ 3, 0, x^2]), {x, 0, n + 1/2}] (* Michael Somos, Aug 02 2011 *)
    a[ n_] := SeriesCoefficient[ Product[(1 - q^k)^KroneckerSymbol[ 8, k], {k, n}], {q, 0, n}] (* Michael Somos, Jul 08 2012 *)
  • PARI
    {a(n) = local(A, u, v); if( n<0, 0, n = 2*n + 1; A = x; forstep( k=3, n, 2, u = A + x * O(x^k); v = subst(u, x, x^2); A -= x^k * polcoeff(u^2 - v + v*u^2 + v^2, k+1) / 2); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = x * subst(A, x, x^2); A = sqrt(A * (1 - A) / (1 + A) / x)); polcoeff(A, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = eta(x^8 + x * O(x^n))^2 / eta(x^4 + x * O(x^n)); A2 = sum( k=1, sqrtint(n), x^k^2 + x^(2*k^2), 1 + x * O(x^n)); polcoeff(A / A2, n))}
    
  • PARI
    {a(n) = local(A, A2); if( n<0, 0, A = x * O(x^n); A = eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3; A2 = subst(A, x, x^2); polcoeff( 2 * A^2 * A2^2 / (A^2 + A2), n))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^kronecker(2, k))) \\ Seiichi Manyama, Sep 24 2019
    

Formula

Expansion of f(-x, -x^7) / f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Aug 02 2011
Expansion of (phi(x) - phi(x^2)) / (2 * x * psi(x^4)) = 2 * psi(x^4) / (phi(x) + phi(x^2)) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 15 2006
Expansion of q^(-1) * (1 - sqrt(k')) / (1 + sqrt(k') + sqrt(2 * (1 + k'))) in powers of q^2 where k' is the complementary elliptic modulus. - Michael Somos, Sep 11 2012
Euler transform of period 8 sequence [-1, 0, 1, 0, 1, 0, -1, 0, ...].
G.f. A(x) satisfies both A(-x) * A(x) = A(x^2) and x * A(x)^2 = B(x * A(x^2)) where B(x) = x * (1 - x) / (1 + x).
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v + v^2 + v*u^2.
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = (1 - u*v) * (u + v)^3 - v * (1 + v^2) * (1 - u^4). - Michael Somos, Feb 15 2006
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^5)) where f(u, v) = (u - v) * (1 + u*v)^5 - u * (1 - u^4) * (1 + v^2) * (1 - 6*v^2 + v^4). - Michael Somos, Feb 15 2006
G.f.: Product_{k>=0} (1 - x^(8*k + 1)) * (1 - x^(8*k + 7)) / ((1 - x^(8*k + 3)) * (1 - x^(8*k + 5))).
G.f. = continued fraction 1/(1 + x + x^2/(1 + x^3 + x^4/(1 + x^5 + x^6/(1 + x^7 + ...)))). Convolution inverse of A111374.
a(2*n + 1) = -A226559(n). - Michael Somos, Jun 12 2013
a(4*n) = A083365(n). a(4*n + 2) = 0.
G.f. A(x) satisfies x*A(-x^2) = x*B(x^2)/C(x^2) = (F(x) - F(-x))/(F(x) + F(-x)), where B(x) is the g.f. of A069911, C(x) is the g.f. of A069910 and F(x) = Product_{k >= 0} 1 + x^(2*k+1) is the g.f. of A000700. - Peter Bala, Feb 07 2021

A069910 Expansion of Product_{i in A069908} 1/(1 - x^i).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 23, 26, 33, 37, 46, 52, 63, 72, 87, 98, 117, 133, 157, 178, 209, 236, 276, 312, 361, 408, 471, 530, 609, 686, 784, 881, 1004, 1126, 1279, 1433, 1621, 1814, 2048, 2286, 2574, 2871, 3223, 3590, 4022, 4472, 5000
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Number 39 of the 130 identities listed in Slater 1952.
Number of partitions of 2*n into distinct odd parts. - Vladeta Jovovic, May 08 2003

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ...
G.f. = q^-1 + q^95 + q^143 + 2*q^191 + 2*q^239 + 3*q^287 + 3*q^335 + ...
		

References

  • M. D. Hirschhorn, The Power of q, Springer, 2017. Chapter 19, Exercises p. 173.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0$2, 1$4, 0$5, 1$4, 0][irem(d, 16)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    max = 56; p = Product[1/(1-x^i), {i, Select[Range[max], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&]}]; s = Series[p, {x, 0, max}]; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Apr 09 2014 *)
    nmax=60; CoefficientList[Series[Product[(1-x^(8*k-1))*(1-x^(8*k-7))*(1-x^(8*k))*(1-x^(16*k-6))*(1-x^(16*k-10))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }[[ Mod[k, 16] + 1]], {k, n}], {x, 0, n}]; (* Michael Somos, Apr 14 2016 *)
  • PARI
    {a(n) = my(A); if( n<0,0, n=2*n; A = x * O(x^n); polcoeff( eta(-x + A) / eta(x^2 + A), n))}; /* Michael Somos, Apr 11 2004 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=0, S, q^(2*n^2) / prod(k=1, 2*n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0][k%16 + 1]), n))}; /* Michael Somos, Apr 14 2016 */

Formula

Euler transform of period 16 sequence [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: Sum_{n>=0} q^(2*n^2) / Product_{k=1..2*n} (1 - q^k). - Joerg Arndt, Apr 01 2014
a(n) ~ exp(sqrt(n/3)*Pi) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
Expansion of f(x^3, x^5) / f(-x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Apr 14 2016
a(n) = A000700(2*n).
a(n) = A027356(4n+1,2n+1). - Alois P. Heinz, Oct 28 2019
From Peter Bala, Feb 08 2021: (Start)
G.f.: A(x) = Product_{n >= 1} (1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)).
The 2 X 2 matrix Product_{k >= 0} [1, x^(2*k+1); x^(2*k+1), 1] = [A(x^2), x*B(x^2); x*B(x)^2, A(x^2)], where B(x) is the g.f. of A069911.
A(x^2) + x*B(x^2) = A^2(-x) + x*B^2(-x) = Product_{k >= 0} 1 + x^(2*k+1), the g.f. of A000700.
A^2(x) + x*B^2(x) is the g.f. of A226622.
(A^2(x) + x*B^2(x))/(A^2(x) - x*B^2(x)) is the g.f. of A208850.
A^4(sqrt(x)) - x*B^4(sqrt(x)) is the g.f. of A029552.
A(x)*B(x) is the g.f. of A226635; A(-x)/B(-x) is the g.f. of A111374; B(-x)/A(-x) is the g.f. of A092869. (End)

A117000 a(n) = Sum_{d|n} Jacobi(2,d)*d.

Original entry on oeis.org

1, 1, -2, 1, -4, -2, 8, 1, 7, -4, -10, -2, -12, 8, 8, 1, 18, 7, -18, -4, -16, -10, 24, -2, 21, -12, -20, 8, -28, 8, 32, 1, 20, 18, -32, 7, -36, -18, 24, -4, 42, -16, -42, -10, -28, 24, 48, -2, 57, 21, -36, -12, -52, -20, 40, 8, 36, -28, -58, 8, -60, 32, 56, 1, 48, 20, -66, 18, -48, -32, 72, 7, 74, -36, -42, -18, -80, 24, 80, -4
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Inverse Mobius transform of the sequence n*A091337(n), n>=1. - R. J. Mathar, Jul 08 2011

Examples

			G.f. = q + q^2 - 2*q^3 + q^4 - 4*q^5 - 2*q^6 + 8*q^7 + q^8  + 7*q^9 - 4*q^10 - 10*q^11 + ...
		

References

  • Henry J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 323.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.67).

Crossrefs

Apart from signs, same as A113418.

Programs

  • Maple
    with(numtheory); A117000:=proc(n) local d,t1,t2; t1:=0; t2:=0; for d from 1 to n do if n mod d = 0 then t1:=t1+jacobi(2,d)*d; fi; od: t1; end;
  • Mathematica
    a[n_] := Sum[JacobiSymbol[2, d]*d, {d, Divisors[n]}]; a /@ Range[80] (* Jean-François Alcover, Jan 10 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q]^2) / 2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^3 / QPochhammer[ q^8]^2) / 2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
  • PARI
    {a(n)= if( n<1, 0, sumdiv(n, d, d * kronecker(2, d)))}; /* Michael Somos, Aug 08 2007 */
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( abs(p%8-4)==3, (p^(e+1)-1)/(p-1), ((-p)^(e+1)-1)/(-p-1))))))}; /* Michael Somos, Aug 08 2007 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^2 + A) * eta(x^4 + A)^3 / eta(x^8 + A)^2) / 2, n))}; /* Michael Somos, Aug 08 2007 */

Formula

G.f.: Sum_{k>0} x^k*(1+x^(2*k))*(1-4*x^(2*k)+x^(4*k))/(1+x^(4*k))^2. - Vladeta Jovovic, Apr 15 2006
From Michael Somos, Aug 08 2007: (Start)
Expansion of (1 - phi(q) * phi(q^2) * phi(-q)^2) / 2 in powers of q where phi() is a Ramanujan theta function.
a(n) is multiplicative with a(2^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 7 (mod 8), ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 5 (mod 8).
Given g.f. A(x), then B(x) = 1 - 2*A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^4 + u^2*v^2 + 2*u^2*w^2 + 2*u*v*w * (-u+2*v-2*w) - 2*u*v^3.
G.f.: Sum_{k>0} k * x^k / (1 - x^k) * Kronecker(2, k). (End)
Logarithmic derivative of A111374, the reciprocal of the Goellnitz-Gordon continued fraction: 1+x + x^2/(1+x^3 + x^4/(1+x^5 + x^6/(1+x^7 +...))) in powers of x. - Paul D. Hanna, Jan 10 2014
From Amiram Eldar, Jan 28 2024: (Start)
a(n) = (-1)^(n+1) * A113418(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(2)) = 0.290786... . (End)

A143259 a(n) = 1 if n is a nonzero square, -1 if n is twice a nonzero square, 0 otherwise.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Aug 02 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 + q^4 - q^8 + q^9 + q^16 - q^18 + q^25 - q^32 + q^36 + q^49 - q^50 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(8), 1/2), 100) [2] ; /* Michael Somos, Jun 10 2014 */
  • Mathematica
    f[n_]:=Which[IntegerQ[Sqrt[n/2]],-1,IntegerQ[Sqrt[n]],1,True,0]; Array[f,110] (* Harvey P. Dale, Jul 07 2011 *)
    a[ n_] := Boole[ IntegerQ[ Sqrt[n]]] - Boole[ IntegerQ[ Sqrt[2 n]]]; (* Michael Somos, Jun 10 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2])/2, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
    Table[LiouvilleLambda[n]*Mod[DivisorSigma[1, n], 2], {n, 100}] (* Jon Maiga, Jan 11 2019 *)
  • PARI
    {a(n) = issquare(n) - issquare(2*n)};
    
  • PARI
    {a(n) = if( n<1, 0, n--; polcoeff( prod(k=1, n, (1 - x^k)^([1, 1, 0, -1, -1, -1, 0, 1][k%8 + 1]), 1 + x * O(x^n)), n))};
    

Formula

Expansion of (phi(q) - phi(q^2)) / 2 = q * psi(q^4) * f(-q, -q^7) / f(-q^3, -q^5) in powers of q where phi(), psi() and f() are Ramanujan theta functions.
Expansion of q * f(-q, -q^7)^2 / psi(-q) in powers of q where psi(), f() are Ramanujan theta functions. - Michael Somos, Jan 01 2015
Euler transform of period 8 sequence [ -1, 0, 1, 1, 1, 0, -1, -1, ...].
a(2*n) = -a(n) for all n in Z.
a(n) is multiplicative with a(2^e) = (-1)^e, a(p^e) = (1 + (-1)^e) / 2 if p == 1 (mod 2).
Dirichlet g.f.: zeta(2*s) * (1 - 2^-s); Dirichlet convolution of A010052 and A154955.
G.f. A(x) satisfies: A(x) / A(x^2) = -1 + A111374(x).
G.f. A(x) satisfies: A(x^2) = - (A(x) + A(-x)) / 2.
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = w * (u + v)^2 - v * (v + w) * (v + 2*w).
G.f.: (theta_3(q) - theta_3(q^2)) / 2 = Sum_{k>0} x^(k^2) - x^(2k^2).
|a(n)| = A053866(n).
a(n) = A008836(n)*A053866(n). - Jon Maiga, Jan 11 2019
Sum_{k=1..n} a(k) ~ (1 - 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020

A245433 Expansion of f(-x^3, -x^5)^2 / (psi(-x) * psi(x^2)) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta functions.

Original entry on oeis.org

1, 1, 0, -1, 1, 1, -2, -2, 3, 4, -4, -5, 5, 6, -8, -9, 12, 13, -14, -17, 18, 21, -26, -28, 34, 39, -42, -49, 53, 60, -70, -78, 90, 101, -110, -125, 137, 153, -174, -192, 217, 241, -264, -295, 322, 357, -400, -438, 490, 540, -588, -652, 711, 781, -866, -946
Offset: 0

Views

Author

Michael Somos, Jul 21 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^3 + x^4 + x^5 - 2*x^6 - 2*x^7 + 3*x^8 + 4*x^9 + ...
G.f. = 1/q + q^3 - q^11 + q^15 + q^19 - 2*q^23 - 2*q^27 + 3*q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 1, 1, -2, 1, 1, -1, 0}[[Mod[k, 8, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x^3, -x^5]^2/(f[-x, -x^3]*f[x^2, x^6]), {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 06 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[0, -1, 1, 1, -2, 1, 1, -1][k%8 + 1]), n))};

Formula

Euler transform of period 8 sequence [1, -1, -1, 2, -1, -1, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u^2 - v)^3 - 4 * u^2 * v^3 * (2*v - u^2) * (u^2*v - v^2 - 2).
a(n) = A111374(2*n) = A245436(4*n - 1).

A111330 Let qf(a,q) = Product_{j >= 0} (1-a*q^j); g.f. is qf(q,q^4)/qf(q^3,q^4).

Original entry on oeis.org

1, -1, 0, 1, -1, -1, 2, 0, -2, 1, 1, -1, -1, 1, 2, -2, -2, 3, 1, -4, 0, 5, -1, -5, 2, 5, -4, -5, 6, 4, -6, -4, 7, 4, -10, -2, 12, 0, -13, 2, 13, -4, -14, 6, 17, -10, -17, 14, 15, -17, -15, 21, 15, -26, -13, 31, 9, -35, -5, 39, 2, -44, 3, 49, -12, -52, 21, 53, -27, -55, 35, 57, -47, -57, 59, 55, -69, -52, 80, 49, -95, -43, 110, 34, -122
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Formula

From Peter Bala, Nov 28 2020: (Start)
O.g.f.: A(x) = F(x)/G(x) where F(x) = Product_{k >= 0} 1 - x^(4*k+1) (see A284313) and G(x) = Product_{k >= 0} 1 - x^(4*k+3) (see A284316).
Continued fraction representations: A(x) = 1 - x/(1 + x^2 - x^3/(1 + x^4 - x^5/(1 + x^6 - ... ))).
A(x) = 1 - x/(1 - x^2*(x - 1)/(1 - x^5/(1 - x^4*(x^3 - 1)/(1 - x^9/(1 - x^6*(x^5 - 1)/(1 - ... )))))). Cf. A224704. (End)

A111375 Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)/(qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)).

Original entry on oeis.org

1, -1, -1, 2, -2, 1, 3, -5, 0, 3, -1, 0, 3, -2, -8, 9, 1, -7, 10, -6, -5, 3, 3, 3, -6, 9, -9, -8, 10, 2, 8, -13, 6, -7, -17, 34, -1, -10, -5, 2, -8, -11, 50, -20, -21, 16, -16, -5, 5, 56, -37, -31, 35, -40, 12, 29, 40, -56, -40, 62, -58, 29, 52, 11, -73, -41, 99, -98, 56, 98, -66, -73, -24, 114, -120, 100, 125, -179, -33, -10, 117, -111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

Suggested by A003823.

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); t7:=qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)/(qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)); series(%,q,M); seriestolist(%);

A292801 Expansion of 1/(1 + x^2 + x^3/(1 + x^5 + x^7/(1 + x^11 + x^13/(1 + ... + x^prime(2*k)/(1 + x^prime(2*k+1) + ...))))), a continued fraction.

Original entry on oeis.org

1, 0, -1, -1, 1, 2, 0, -3, -1, 3, 4, -3, -7, -1, 11, 6, -10, -17, 8, 26, 8, -40, -28, 33, 71, -19, -99, -49, 141, 125, -99, -285, 30, 371, 253, -492, -541, 263, 1122, 57, -1352, -1197, 1672, 2260, -548, -4345, -871, 4804, 5387, -5475, -9182, 294, 16526, 5725, -16587, -23366
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[1/(1 + x^2 + ContinuedFractionK[x^Prime[2 k], 1 + x^Prime[2 k + 1], {k, 1, nmax}]), {x, 0, nmax}], x]

A327758 Expansion of Product_{k>=1} 1/(1 - x^k)^(3/k), where (m/n) is the Kronecker symbol.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, -1, -1, -1, -1, 0, 1, 1, 2, 3, 2, 1, 0, -2, -4, -4, -4, -3, 0, 3, 5, 6, 7, 4, 0, -4, -8, -12, -11, -6, -2, 4, 12, 17, 16, 12, 4, -8, -17, -22, -24, -20, -6, 11, 24, 34, 36, 29, 12, -10, -33, -47, -50, -40, -18, 13, 44, 66, 72, 59, 27, -16, -58, -89, -100, -84, -41
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2019

Keywords

Crossrefs

Convolution inverse of A327757.
Product_{k>=1} 1/(1 - x^k)^(b/k): A111374 (b=2), A000009 (b=4), A003823 (b=5), A214157 (b=13).
Cf. A091338,

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^kronecker(3, k)))
Showing 1-10 of 10 results.