cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A117005 a(n) = A117000(n) - A117001(n).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, -1, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, 2, 2, -4, -3, 2, -4, 2, 2, -14, 2, 2, -4, 2, -8, -4, 2, 2, -4, -8, 2, -4, 2, 2, -14, 2, 2, -4, 9, -8, -4, 2, 2, -4, -8, 16, -4, 2, 2, -14, 2, 2, 10, 2, -8, -4, 2, 2, -4, 6, 2, -4, 2, 2, -14, 2, 16, -4, 2, -8, 5, 2, 2, 10, -8, 2, -4, 2, 2, 4, 16, 2, -4, 2, -8, -4, 2, 16, 14, -8
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

Crossrefs

A117006 A117000(n) + A117001(n).

Original entry on oeis.org

1, 0, -6, 0, -10, -6, 14, 0, 15, -10, -22, 0, -26, 14, 20, 0, 34, 18, -38, -10, -28, -22, 46, 0, 45, -26, -36, 14, -58, 30, 62, 0, 44, 34, -56, 18, -74, -38, 52, 0, 82, -28, -86, -22, -42, 46, 94, 0, 105, 50, -68, -26, -106, -36, 88, 0, 76, -58, -118, 30, -122, 62, 102, 0, 104, 44, -134, 34, -92, -70, 142, 18, 146
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

A117007 A117000(8*n-1) - A117001(8*n-1).

Original entry on oeis.org

2, -4, 2, 2, -4, 2, -8, 10, 2, 2, -4, -8, 2, -4, 16, 2, 4, -20, 2, -4, 2, 6, -4, 2, 2, 14, -8, 2, -12, 2, -24, 16, 2, 2, 14, 16, -8, -4, 2, -20, -4, -8, 16, -12, 2, 2, 16, 2, 36, -28, -20, -8, 14, 2, 2, -4, -20, 2, -4, 2, 2, 12, 2, 16, -4, 36, -8, -4, -36, -24, -14, 38, -20, -4, 2, 2, 16, 16, 2, 14, 2, -8, 4, -20, 16, -4, -8, -36, 14, 2
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

A117008 (A117000(8*n-1) - A117001(8*n-1))/2.

Original entry on oeis.org

1, -2, 1, 1, -2, 1, -4, 5, 1, 1, -2, -4, 1, -2, 8, 1, 2, -10, 1, -2, 1, 3, -2, 1, 1, 7, -4, 1, -6, 1, -12, 8, 1, 1, 7, 8, -4, -2, 1, -10, -2, -4, 8, -6, 1, 1, 8, 1, 18, -14, -10, -4, 7, 1, 1, -2, -10, 1, -2, 1, 1, 6, 1, 8, -2, 18, -4, -2, -18, -12, -7, 19, -10, -2, 1, 1, 8, 8, 1, 7, 1, -4, 2, -10, 8, -2, -4, -18, 7, 1, 1, -6, 1, 1, 10, -12, 21
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

A117009 A117000(8*n+1) + A117001(8*n-1).

Original entry on oeis.org

1, -1, 2, -3, -4, 2, 9, -4, -8, 2, 5, 2, 2, 0, 2, -9, -4, 2, -8, 14, 16, -11, -4, -8, 2, -4, -20, 16, 19, 2, 2, -4, 2, -8, -16, 2, 19, -8, -8, 2, -4, 16, 2, 16, 2, -17, 14, -24, -16, -4, 2, 2, -4, 26, 2, 7, 2, 2, 16, -20, -24, -4, 16, -8, -24, 2, 25, -4, -8, 16, 8, 2, 2, 8, 2, 2, -32, 2, 17, -4, 2, -20, 14, -32, 2, -4, -24, 36, 16, 48
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

A236928 Number of integer solutions to a^2 + b^2 + c^2 + 2*d^2 = n.

Original entry on oeis.org

1, 6, 14, 20, 30, 40, 36, 48, 62, 42, 72, 100, 68, 120, 112, 48, 126, 108, 98, 180, 136, 160, 180, 144, 132, 126, 216, 200, 240, 280, 112, 192, 254, 120, 252, 320, 210, 360, 324, 144, 264, 252, 288, 420, 340, 280, 336, 288, 260, 342, 294, 360, 408, 520, 360, 240, 496
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2014

Keywords

Crossrefs

For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1, 2, 3, 4, 5, 6, 7, 8, 12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

Formula

G.f.: theta_3(q)^3*theta_3(q^2), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018
G.f.: 1 + 8*Sum{n >= 1} n*(q^n - q^(3*n) - q^(5*n) + q^(7*n))/(1 - q^(8*n)) - 2*Sum_{n >= 0} (-1)^((n^2+n)/2)*(2*n+1)q^(2*n+1)/(1 - q^(2*n+1)). See Zucker p. 5. Cf. A117000. - Peter Bala, Feb 25 2021

A117001 Sum_{d|n, sqrt(n) < d <= n} Jacobi(2,d)*d - Sum_{d|n, 1 <= d < sqrt(n)} Jacobi(2,d)*d.

Original entry on oeis.org

0, -1, -4, -1, -6, -4, 6, -1, 8, -6, -12, 2, -14, 6, 12, -1, 16, 11, -20, -6, -12, -12, 22, 2, 24, -14, -16, 6, -30, 22, 30, -1, 24, 16, -24, 11, -38, -20, 28, 4, 40, -12, -44, -12, -14, 22, 46, 2, 48, 29, -32, -14, -54, -16, 48, -8, 40, -30, -60, 22, -62, 30, 46, -1, 56, 24, -68, 16, -44, -38, 70, 11, 72, -38, -28, -20, -96, 28
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 323.

Crossrefs

Cf. A117000.

Programs

  • Maple
    with(numtheory); A117001:=proc(n) local d,t1,t2; t1:=0; t2:=0; for d from 1 to n do if n mod d = 0 then if d^2>n then t1:=t1+jacobi(2,d)*d; fi; if d^2
    				
  • Mathematica
    a[n_] := Sum[Which[Sqrt[n]Jean-François Alcover, Feb 17 2023 *)

A113417 Expansion of phi(x) * phi(-x)^2 * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, -4, 8, 7, -10, -12, 8, 18, -18, -16, 24, 21, -20, -28, 32, 20, -32, -36, 24, 42, -42, -28, 48, 57, -36, -52, 40, 36, -58, -60, 56, 48, -66, -48, 72, 74, -42, -80, 80, 61, -82, -72, 56, 90, -96, -64, 72, 98, -70, -100, 104, 64, -106, -108, 72, 114, -96
Offset: 0

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x - 4*x^2 + 8*x^3 + 7*x^4 - 10*x^5 - 12*x^6 + 8*x^7 + 18*x^8 + ...
G.f. = q - 2*q^3 - 4*q^5 + 8*q^7 + 7*q^9 - 10*q^11 - 12*q^13 + 8*q^15 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 2), 117); A[2] - 2*A[4] - 4*A[6] + 8*A[8] + 7*A[10] - 10*A[12] - 12*A[14]; /* Michael Somos, May 19 2015 */
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ 2, #] # &]]; (* Michael Somos, May 19 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^8]^2 QPochhammer[ x^2]^3 / QPochhammer[ x^4]^3, {x, 0, n}]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 2*n + 1, d, d * (d%2) * (-1)^((d + 1) \ 4)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p *= kronecker( 2, p); (p^(e+1) - 1) / (p - 1))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^8 + A))^2 * (eta(x^2 + A) / eta(x^4 + A))^3, n))};
    

Formula

Expansion of q^(-1/2) * (eta(q) * eta(q^8))^2 * (eta(q^2) / eta(q^4))^3 in powers of q.
Euler transform of period 8 sequence [ -2, -5, -2, -2, -2, -5, -2, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 7 (mod 8), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} (2*k - 1) * (-1)^[k/2] * x^(2*k - 1) / (1 - x^(4*k - 2)) = x * (Product_{k>0} ((1 - x^(2*k)) * (1 - x^(4*k)) * (1 + x^(8*k)))^2 / (1 + x^(4*k))).
a(n) = (-1)^n * A113419(n) = (-1)^floor(n/2) * A209940(n) = (-1)^(n + floor(n/2)) * A258096(n). - Michael Somos, May 19 2015
a(n) = A117000(2*n + 1).
a(n) = Sum_{d | 2*n + 1} Kronecker(2, d) * d.

A113418 Expansion of (eta(q^2)^7*eta(q^4)/(eta(q)*eta(q^8))^2-1)/2 in powers of q.

Original entry on oeis.org

1, -1, -2, -1, -4, 2, 8, -1, 7, 4, -10, 2, -12, -8, 8, -1, 18, -7, -18, 4, -16, 10, 24, 2, 21, 12, -20, -8, -28, -8, 32, -1, 20, -18, -32, -7, -36, 18, 24, 4, 42, 16, -42, 10, -28, -24, 48, 2, 57, -21, -36, 12, -52, 20, 40, -8, 36, 28, -58, -8, -60, -32, 56, -1, 48, -20, -66, -18, -48, 32, 72, -7, 74, 36, -42, 18, -80, -24
Offset: 1

Views

Author

Michael Somos, Oct 29 2005

Keywords

Crossrefs

Apart from signs, same as A117000.
A113416(n)=2*a(n) if n>0.

Programs

  • Mathematica
    f[p_, e_] := If[1 < Mod[p, 8] < 7, ((-p)^(e+1)-1)/(-p-1), (p^(e+1)-1)/(p-1)]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    a(n)=if(n<1, 0, -sumdiv(n,d, d*(d%2)*(-1)^(n/d+(d+1)\4)))
    
  • PARI
    {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, -1, p*=kronecker(2,p); (p^(e+1)-1)/(p-1)))))}

Formula

a(n) is multiplicative and a(2^e) = -1 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p == 1, 7 (mod 8), a(p^e) = ((-p)^(e+1)-1)/(-p-1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>0} (2k-1)*(-1)^[k/2]*x^(2k-1)/(1+x^(2k-1)).
From Amiram Eldar, Jan 28 2024: (Start)
a(n) = (-1)^(n+1) * A117000(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(2)) = 0.290786... . (End)

A131999 Expansion of eta(q)^2 * eta(q^2) * eta(q^4)^3 / eta(q^8)^2 in powers of q.

Original entry on oeis.org

1, -2, -2, 4, -2, 8, 4, -16, -2, -14, 8, 20, 4, 24, -16, -16, -2, -36, -14, 36, 8, 32, 20, -48, 4, -42, 24, 40, -16, 56, -16, -64, -2, -40, -36, 64, -14, 72, 36, -48, 8, -84, 32, 84, 20, 56, -48, -96, 4, -114, -42, 72, 24, 104, 40, -80, -16, -72, 56, 116, -16
Offset: 0

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Number 19 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 2*q^2 + 4*q^3 - 2*q^4 + 8*q^5 + 4*q^6 - 16*q^7 - 2*q^8 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.67).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 2), 61); A[1] - 2*A[2] - 2*A[3] + 4*A[4] - 2*A[5]; /* Michael Somos, Jun 28 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -2 DivisorSum[ n, # KroneckerSymbol[ 2, #] &]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^3 / QPochhammer[ q^8]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -2 * sumdiv(n, d, d * kronecker( 2, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 1, abs(p%8-4)==3, (p^(e+1) - 1) / (p - 1), ((-p)^(e+1) - 1) / (-p - 1))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^4 + A)^3 / eta(x^8 + A)^2, n))};
    

Formula

Expansion of phi(q) * phi(q^2) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 8 sequence [-2, -3, -2, -6, -2, -3, -2, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^4 + u^2*v^2 + 2 * u^2*w^2 + 2 * u*v*w * (-u + 2*v - 2*w) - 2 * u*v^3.
a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 7 (mod 8), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 5 (mod 8).
a(2*n) = a(n) for all n in Z.
G.f.: 1 - 2* Sum_{k>0} k * x^k / (1 - x^k) * Kronecker(2, k).
G.f.: Product_{k>0} (1 - x^k)^4 * (1 + x^k)^2 * (1 + x^(2*k)) / (1 + x^(4*k))^2.
a(n) = -2 * A117000(n) unless n=0. a(n) = (-1)^n * A113416(n). a(2*n + 1) = - 2 * A113417(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(11/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A124340. - Michael Somos, Jun 28 2015
Convolution square is A259491. - Michael Somos, Jun 28 2015
Showing 1-10 of 10 results.