cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A113419 Expansion of phi(x)^2 * phi(-x) * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -4, -8, 7, 10, -12, -8, 18, 18, -16, -24, 21, 20, -28, -32, 20, 32, -36, -24, 42, 42, -28, -48, 57, 36, -52, -40, 36, 58, -60, -56, 48, 66, -48, -72, 74, 42, -80, -80, 61, 82, -72, -56, 90, 96, -64, -72, 98, 70, -100, -104, 64, 106, -108, -72, 114, 96
Offset: 0

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Number 46 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - 4*x^2 - 8*x^3 + 7*x^4 + 10*x^5 - 12*x^6 - 8*x^7 + 18*x^8 + ...
G.f. = q + 2*q^3 - 4*q^5 - 8*q^7 + 7*q^9 + 10*q^11 - 12*q^13 - 8*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^9 QPochhammer[ q^8]^2 / (QPochhammer[ q]^2 QPochhammer[ q^4]^5), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ 2, #] # &]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, d*(d%2) * (-1)^((n/d)\2 + (d-1)\4)))};
    
  • PARI
    {a(n) = my(A, p, e, t); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, t = (-1)^(p\2); p *= kronecker( -2, p); (p^(e+1) - t^(e+1)) / (p - t) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^5), n))};

Formula

Expansion of q^(-1/2) * (eta(q^2)^9 * eta(q^8)^2) / (eta(q)^2 * eta(q^4)^5) in powers of q. - Michael Somos, Mar 14 2012
Euler transform of period 8 sequence [ 2, -7, 2, -2, 2, -7, 2, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (x^(e+1) - y^(e+1)) / (x - y) where x = p * (-1)^floor(p/4) and y = (-1)^floor(p/2).
G.f.: Sum_{k>0} (2*k - 1) * (-1)^[(k - 1)/2] * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = (-1)^n * A113417(n) = (-1)^floor(n/2) * A258096(n) = (-1)^(n + floor(n/2)) * A209940(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109039. - Michael Somos, May 20 2015

A209940 Expansion of psi(x^4) * phi(-x^4)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -8, 7, -10, 12, -8, 18, -18, 16, -24, 21, -20, 28, -32, 20, -32, 36, -24, 42, -42, 28, -48, 57, -36, 52, -40, 36, -58, 60, -56, 48, -66, 48, -72, 74, -42, 80, -80, 61, -82, 72, -56, 90, -96, 64, -72, 98, -70, 100, -104, 64, -106, 108, -72, 114, -96
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Number 47 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 4*x^2 - 8*x^3 + 7*x^4 - 10*x^5 + 12*x^6 - 8*x^7 + 18*x^8 + ...
G.f. = q - 2*q^3 + 4*q^5 - 8*q^7 + 7*q^9 - 10*q^11 + 12*q^13 - 8*q^15 + 18*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^4]^9 / (QPochhammer[ q^2]^5 QPochhammer[ q^8]^2), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^9 / (eta(x^2 + A)^5 * eta(x^8 + A)^2), n))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(2*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0^e, p==3, ((-p)^(e+1) - 1) / ((-p) - 1), p *= kronecker( 18, p); (-1)^(e*(p\6)) * (p^(e+1) - 1) / (p - 1))))};

Formula

Expansion of q^(-1/2) * eta(q)^2 * eta(q^4)^9 / (eta(q^2)^5 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 3, -2, -6, -2, 3, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 512^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113419.
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = (1 - (-3)^(e+1)) / 4, b(p^e) = (-1)^(e * [p/6]) * ((p*f)^(e+1) - 1) / (p*f - 1) where f = Kronecker( 18, p).
a(n) = (-1)^n * A258096(n) = (-1)^floor(n/2) * A113419(n) = (-1)^(n + floor(n/2)) * A113417(n).

A258096 Expansion of psi(x^4) * phi(-x^4)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 8, 7, 10, 12, 8, 18, 18, 16, 24, 21, 20, 28, 32, 20, 32, 36, 24, 42, 42, 28, 48, 57, 36, 52, 40, 36, 58, 60, 56, 48, 66, 48, 72, 74, 42, 80, 80, 61, 82, 72, 56, 90, 96, 64, 72, 98, 70, 100, 104, 64, 106, 108, 72, 114, 96, 84, 144, 111, 84, 104, 128
Offset: 0

Views

Author

Michael Somos, May 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 7*x^4 + 10*x^5 + 12*x^6 + 8*x^7 + ...
G.f. = q + 2*q^3 + 4*q^5 + 8*q^7 + 7*q^9 + 10*q^11 + 12*q^13 + 8*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4]^7 / (QPochhammer[ x]^2 QPochhammer[ x^8]^2), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2] EllipticTheta[ 4, 0, x^4]^4 / (EllipticTheta[ 4, 0, x] 2 x^(1/2)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^7 / (eta(x + A)^2 * eta(x^8 + A)^2), n))};

Formula

Expansion of q^(-1/2) * eta(q^2) * eta(q^4)^7 / (eta(q)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, -6, 2, 1, 2, -4, ...].
a(n) = (-1)^n * A209940(n) = (-1)^floor(n/2) * A113419(n) = (-1)^(n + floor(n/2)) * A113417(n).

A131999 Expansion of eta(q)^2 * eta(q^2) * eta(q^4)^3 / eta(q^8)^2 in powers of q.

Original entry on oeis.org

1, -2, -2, 4, -2, 8, 4, -16, -2, -14, 8, 20, 4, 24, -16, -16, -2, -36, -14, 36, 8, 32, 20, -48, 4, -42, 24, 40, -16, 56, -16, -64, -2, -40, -36, 64, -14, 72, 36, -48, 8, -84, 32, 84, 20, 56, -48, -96, 4, -114, -42, 72, 24, 104, 40, -80, -16, -72, 56, 116, -16
Offset: 0

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Number 19 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q - 2*q^2 + 4*q^3 - 2*q^4 + 8*q^5 + 4*q^6 - 16*q^7 - 2*q^8 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.67).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 2), 61); A[1] - 2*A[2] - 2*A[3] + 4*A[4] - 2*A[5]; /* Michael Somos, Jun 28 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -2 DivisorSum[ n, # KroneckerSymbol[ 2, #] &]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^3 / QPochhammer[ q^8]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^4]^2, {q, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -2 * sumdiv(n, d, d * kronecker( 2, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 1, abs(p%8-4)==3, (p^(e+1) - 1) / (p - 1), ((-p)^(e+1) - 1) / (-p - 1))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^4 + A)^3 / eta(x^8 + A)^2, n))};
    

Formula

Expansion of phi(q) * phi(q^2) * phi(-q)^2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 8 sequence [-2, -3, -2, -6, -2, -3, -2, -4, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^4 + u^2*v^2 + 2 * u^2*w^2 + 2 * u*v*w * (-u + 2*v - 2*w) - 2 * u*v^3.
a(n) = 2 * b(n) where b() is multiplicative with b(2^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 7 (mod 8), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 5 (mod 8).
a(2*n) = a(n) for all n in Z.
G.f.: 1 - 2* Sum_{k>0} k * x^k / (1 - x^k) * Kronecker(2, k).
G.f.: Product_{k>0} (1 - x^k)^4 * (1 + x^k)^2 * (1 + x^(2*k)) / (1 + x^(4*k))^2.
a(n) = -2 * A117000(n) unless n=0. a(n) = (-1)^n * A113416(n). a(2*n + 1) = - 2 * A113417(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(11/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A124340. - Michael Somos, Jun 28 2015
Convolution square is A259491. - Michael Somos, Jun 28 2015
Showing 1-4 of 4 results.