cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111165 Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q,q^3)/qf(q^2,q^3).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, -1, 0, 1, -2, 2, 0, -2, 2, -1, -1, 3, -2, -1, 3, -3, 0, 4, -5, 2, 3, -6, 4, 2, -7, 6, 0, -7, 9, -2, -7, 10, -5, -6, 13, -8, -5, 15, -13, -1, 16, -17, 2, 16, -22, 8, 16, -27, 14, 12, -30, 22, 9, -34, 29, 3, -36, 39, -5, -37, 47, -14, -36, 58, -26, -33, 66, -41, -26, 75, -56, -18, 81, -74, -4, 87, -94, 12, 87, -113, 34
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Cf. A111375. Convolution inverse of A111317.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0, -1, 1][irem(d, 3)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 02 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, -1, 1}[[Mod[d, 3]+1]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 28 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=0, n\3, (1 - x^(3*k+1)) / (1 - x^(3*k+2)), 1 + x * O(x^n)), n))} /* Michael Somos, Dec 23 2007 */

Formula

Euler transform of period 3 sequence [ -1, 1, 0, ...]. - Michael Somos, Dec 23 2007
G.f.: Product_{k>=0} (1 - x^(3*k+1)) / (1 - x^(3*k+2)).

A111376 Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)/(qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, -1, 3, 1, 3, 1, 4, 2, -1, -1, 1, 3, 1, 4, 6, 1, -1, -4, 5, -3, 6, 4, 9, -4, -5, 0, -3, 4, 4, 18, 1, -3, -4, -7, 0, -3, 25, 1, 5, -11, -4, -12, -7, 32, 11, 15, -15, 4, -24, -21, 27, 21, 31, -24, 17, -41, -31, 4, 38, 50, -18, 36, -46, -41, -36, 45, 67, -12, 57, -50, -38, -95, 51, 73, 14, 82, -32, -27, -171, 44
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Cf. A111375.

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=1,n, (1-x^k)^-kronecker(-7,k), 1+x*O(x^n)), n))} /* Michael Somos, Nov 11 2005 */

Formula

Euler transform of period 7 sequence [1, 1, -1, 1, -1, -1, 0, ...]. - Michael Somos, Nov 11 2005
G.f.: Product_{k>0} (1-x^(7k-4))(1-x^(7k-2))(1-x^(7k-1))/((1-x^(7k-3))*(1-x^(7k-5))(1-x^(7k-6))). - Michael Somos, Nov 11 2005
Showing 1-2 of 2 results.