cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001936 Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 10, 18, 32, 55, 90, 144, 226, 346, 522, 777, 1138, 1648, 2362, 3348, 4704, 6554, 9056, 12425, 16932, 22922, 30848, 41282, 54946, 72768, 95914, 125842, 164402, 213901, 277204, 357904, 460448, 590330, 754368, 960948, 1220370, 1545306
Offset: 0

Views

Author

Keywords

Comments

The Cayley reference is actually to A079006. - Michael Somos, Feb 24 2011
In the math overflow link is a conjecture that a(n) == a(9*n + 2) (mod 4).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 4-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The g.f. in the form A(x) = Sum_{k >= 0} x^(k*(k+1)) / (1 + 2*Sum_{k >= 1} (-1)^k * x^(k^2)) == Sum_{k >= 0} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 18*x^4 + 32*x^5 + 55*x^6 + 90*x^7 + 144*x^8 + ...
G.f. = q + 2*q^5 + 5*q^9 + 10*q^13 + 18*q^17 + 32*q^21 + 55*q^25 + 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548, A333374.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> [2,2,2,0] [modp(n-1,4)+1]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
    f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRBP := (L,M) -> (f(L,M)/f(1,M))^2; S := L -> seriestolist(series(LRBP(L,80),q,60)); S(4); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    m = 38; CoefficientList[ Series[ Product[ (1 - x^(4*k))/(1 - x^k), {k, 1, m}]^2 , {x, 0, m}], x] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]) / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] QPochhammer[ -x^2, x^2])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 / if(k%4, 1 - x^k, 1), 1 + x * O(x^n))^2, n))};

Formula

G.f.: Product ( 1 - x^k )^(-c(k)); c(k) = 2, 2, 2, 0, 2, 2, 2, 0, ....
Convolution square of A001935. A079006(n) = (-1)^n a(n).
Expansion of q^(-1/4) * (1/2) * (k / k')^(1/2) in powers of q.
Euler transform of period 4 sequence [ 2, 2, 2, 0, ...].
Given g.f. A(x), then B(q) = (q * A(q^4))^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + 16*u) * (1 + 16*v) * v - u^2. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 4*u*v)^2. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^2.
Equals A000009 convolved with A098613. - Gary W. Adamson, Mar 24 2011
a(9*n + 2) = a(n) + 4 * A210656(3*n). - Michael Somos, Apr 02 2012
Convolution inverse is A082304. - Michael Somos, May 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082304. - Michael Somos, May 16 2015
Expansion of f(-x^4)^2 / f(-x)^2 = psi(x^2) / phi(-x) = psi(-x)^2 / phi(-x)^2 = psi(x)^2 / phi(-x^2)^2 = psi(x^2)^2 / psi(-x)^2 = chi(x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x)^4) = 1 / (chi(-x)^2 * chi(-x^2)^2) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, May 16 2015
a(n) ~ exp(Pi*sqrt(n)) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 18 2015
G.f.: A(x) = Sum_{n >= 0} x^(n*(n+1)) / Sum_{n = -oo..oo} (-1)^n*x^(n^2). - Peter Bala, Feb 19 2021

A339335 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^3.

Original entry on oeis.org

1, 3, 3, 6, 3, 12, 3, 13, 6, 12, 3, 30, 3, 12, 12, 24, 3, 30, 3, 30, 12, 12, 3, 69, 6, 12, 13, 30, 3, 57, 3, 42, 12, 12, 12, 87, 3, 12, 12, 69, 3, 57, 3, 30, 30, 12, 3, 141, 6, 30, 12, 30, 3, 69, 12, 69, 12, 12, 3, 165, 3, 12, 30, 73, 12, 57, 3, 30, 12, 57, 3, 216, 3, 12, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Crossrefs

Formula

a(p^k) = A022568(k) for prime p.

A022598 Expansion of Product_{m>=1} (1+q^m)^(-3).

Original entry on oeis.org

1, -3, 3, -4, 9, -12, 15, -21, 30, -43, 54, -69, 94, -123, 153, -193, 252, -318, 391, -486, 609, -754, 918, -1119, 1376, -1680, 2019, -2432, 2946, -3540, 4220, -5034, 6015, -7157, 8463, -9999, 11835, -13956, 16374, -19206, 22542, -26376, 30750, -35829, 41745
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 3*x + 3*x^2 - 4*x^3 + 9*x^4 - 12*x^5 + 15*x^6 - 21*x^7 + 30*x^8 + ...
G.f. = 1/q - 3*q^7 + 3*q^15 - 4*q^23 + 9*q^31 - 12*q^39 + 15*q^47 - 21*q^55 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^3.

Crossrefs

Column k=3 of A286352.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^3, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^3, n))};

Formula

Expansion of chi(-x)^3 = phi(-x) / psi(x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Aug 09 2015
Expansion of q^(1/8) * (eta(q) / eta(q^2))^3 in powers of q. - Michael Somos, Apr 24 2015
Euler transform of period 2 sequence [ -3, 0, ...]. - Michael Somos, Aug 09 2015
Convolution cube of A081362. - Michael Somos, Apr 24 2015
Convolution inverse of A022568. - Michael Somos, Aug 09 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(3/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A187154 Expansion of psi(x^4) / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 44, 72, 114, 178, 272, 408, 605, 884, 1276, 1824, 2580, 3616, 5028, 6936, 9498, 12922, 17468, 23472, 31369, 41700, 55156, 72616, 95172, 124202, 161436, 209016, 269616, 346562, 443952, 566856, 721530, 915642, 1158608, 1461968, 1839789
Offset: 0

Views

Author

Michael Somos, Mar 08 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Since phi(-x) = 1 + 2*Sum_{k >= 1} (-1)^k*x^(k^2) == 1 (mod 2), it follows that the g.f. psi(x^4) / phi(-x) == psi(x^4) == Sum_{k >= 0} x^(2*k*(k+1)) (mod 2). Hence a(n) is odd iff n = 2*k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 07 2025

Examples

			1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 44*x^6 + 72*x^7 + 114*x^8 + ...
q + 2*q^3 + 4*q^5 + 8*q^7 + 15*q^9 + 26*q^11 + 44*q^13 + 72*q^15 + 114*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    a[n_]:= SeriesCoefficient[EllipticTheta[2, 0, q^2]/(2*Sqrt[q]* EllipticTheta[3, 0, -q]), {q, 0, n}]; Table[A187154[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}

Formula

Expansion of q^(-1/2) * eta(q^2) * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, 2, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A093085.
Convolution inverse of A093085. Convolution square is A107035.
a(n) ~ exp(sqrt(n)*Pi)/(16*n^(3/4)). - Vaclav Kotesovec, Sep 10 2015

A369709 Maximal coefficient of (1 + x)^3 * (1 + x^2)^3 * (1 + x^3)^3 * ... * (1 + x^n)^3.

Original entry on oeis.org

1, 3, 12, 62, 332, 1974, 12345, 80006, 531524, 3602358, 24836850, 173607568, 1226700784, 8748861828, 62922343566, 455805857978, 3321800235936, 24338840717799, 179217603427200, 1325490660318216, 9841000101286172, 73319407735938570, 548051770664957631, 4108826483323392880
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 + x^k)^3, {k, 1, n}], x]], {n, 0, 23}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, (1+x^k)^3))); \\ Michel Marcus, Jan 30 2024
    
  • Python
    from collections import Counter
    def A369709(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                d[j+k] += 3*a
                d[j+2*k] += 3*a
                d[j+3*k] += a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 07 2024

A022600 Expansion of Product_{m>=1} (1+q^m)^(-5).

Original entry on oeis.org

1, -5, 10, -15, 30, -56, 85, -130, 205, -315, 465, -665, 960, -1380, 1925, -2651, 3660, -5020, 6775, -9070, 12126, -16115, 21220, -27765, 36235, -47101, 60810, -78115, 100105, -127825, 162391, -205530, 259475, -326565
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Related to Expansion of Product_{m>=1} (1+q^m)^k: A022627 (k=-32), A022626 (k=-31), A022625 (k=-30), A022624 (k=-29), A022623 (k=-28), A022622 (k=-27), A022621 (k=-26), A022620 (k=-25), A007191 (k=-24), A022618 (k=-23), A022617 (k=-22), A022616 (k=-21), A022615 (k=-20), A022614 (k=-19), A022613 (k=-18), A022612 (k=-17), A022611 (k=-16), A022610 (k=-15), A022609 (k=-14), A022608 (k=-13), A007249 (k=-12), A022606 (k=-11), A022605 (k=-10), A022604 (k=-9), A007259 (k=-8), A022602 (k=-7), A022601 (k=-6), this sequence (k=-5), A022599 (k=-4), A022598 (k=-3), A022597 (k=-2), A081362 (k=-1), A000009 (k=1), A022567 (k=2), A022568 (k=3), A022569 (k=4), A022570 (k=5), A022571 (k=6), A022572 (k=7), A022573 (k=8), A022574 (k=9), A022575 (k=10), A022576 (k=11), A022577 (k=12), A022578 (k=13), A022579 (k=14), A022580 (k=15), A022581 (k=16), A022582 (k=17), A022583 (k=18), A022584 (k=19), A022585 (k=20), A022586 (k=21), A022587 (k=22), A022588 (k=23), A014103 (k=24), A022589 (k=25), A022590 (k=26), A022591 (k=27), A022592 (k=28), A022593 (k=29), A022594 (k=30), A022595 (k=31), A022596 (k=32), A025233 (k=48).
Column k=5 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-5))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 5^(1/4) * exp(Pi*sqrt(5*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(5/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-5*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
Showing 1-6 of 6 results.