cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115671 Number of partitions of n into parts not congruent to 0, 2, 12, 14, 16, 18, 20, 30 (mod 32).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369
Offset: 0

Views

Author

Michael Somos, Jan 29 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (1987) refers to this sequence as p(S, n) where S is the set in equation (1) on page 437.

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ...
a(5) = 4 since 5 = 4 + 1 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 4 ways.
a(6) = 6 since 6 = 5 + 1 = 4 + 1 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 6 ways.
		

Crossrefs

Programs

  • Haskell
    a115671 = p [x | x <- [0..], (mod x 32) `notElem` [0,2,12,14,16,18,20,30]]
       where p _          0 = 1
             p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 03 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] / QPochhammer[ q] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 / QPochhammer[ q]^2 / QPochhammer[ q^4] + 1) / 2, {q, 0, n}]; (* Michael Somos, Nov 09 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A))) / 2, n))};
    

Formula

Expansion of (f(q) / f(-q) + 1) / 2 in powers of q where f() is a Ramanujan theta function.
Expansion of f(q^6, q^10) / f(-q, -q^3) = (f(q^22, q^26) - q^2 * f(q^10, q^38)) / f(-q, -q^2) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 32 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(x) = (2*A(x) - 1)^2 = g.f. A007096 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 1 + u^2 - 2 * u * v^2.
G.f. (1 + sqrt( theta_3(x) / theta_4(x))) / 2 = (Sum_{k} x^(8*k^2 - 2*k)) / (Sum_{k} (-x)^(2*k^2 - k)) = (Sum_{k} x^(24*n^2 + 2*n) - x^(24*n^2 + 14*n + 2)) / (Product_{k>0} 1 - x^k).
2 * a(n) = A080054(n) unless n = 0. a(2*n + 2) = A208851(n). a(2*n + 1) = A187154(n). a(n + 1) = A208856(n).

A210063 Expansion of psi(x^4) / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 4, -8, 15, -26, 44, -72, 114, -178, 272, -408, 605, -884, 1276, -1824, 2580, -3616, 5028, -6936, 9498, -12922, 17468, -23472, 31369, -41700, 55156, -72616, 95172, -124202, 161436, -209016, 269616, -346562, 443952, -566856, 721530, -915642, 1158608
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 2*x + 4*x^2 - 8*x^3 + 15*x^4 - 26*x^5 + 44*x^6 - 72*x^7 + 114*x^8 + ...
q - 2*q^3 + 4*q^5 - 8*q^7 + 15*q^9 - 26*q^11 + 44*q^13 - 72*q^15 + 114*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^(-1/2) * EllipticTheta[2, 0, x^2] / (2*EllipticTheta[3, 0, x]), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 17 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x^2 + A)^5, n))}

Formula

Expansion of q^(-1/2) * eta(q)^2 * eta(q^4) * eta(q^8)^2 / eta(q^2)^5 in powers of q.
Euler transform of period 8 sequence [ -2, 3, -2, 2, -2, 3, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A210030.
a(n) = (-1)^n * A187154(n). Convolution inverse of A208589.
a(n) ~ (-1)^n * exp(sqrt(n)*Pi) / (16*n^(3/4)). - Vaclav Kotesovec, Nov 17 2017

A208856 Partitions of n into parts not congruent to 0, +-4, +-6, +-10, 16 (mod 32).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 34, 44, 56, 72, 91, 114, 143, 178, 220, 272, 334, 408, 498, 605, 732, 884, 1064, 1276, 1528, 1824, 2171, 2580, 3058, 3616, 4269, 5028, 5910, 6936, 8124, 9498, 11088, 12922, 15034, 17468, 20264, 23472, 27154, 31369, 36189
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Andrews (1987) refers to this sequence as p(T, n) where T is the set in equation (1) on page 437.

Examples

			1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + 15*x^8 + 20*x^9 + ...
a(5) = 6 since  5 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 in 6 ways.
a(6) = 8 since  5 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 in 8 ways.
		

Crossrefs

Programs

  • Mathematica
    A208856[n_] := SeriesCoefficient[(1/(2*q))*((QPochhammer[-q, -q]/ QPochhammer[q, q]) - 1), {q, 0, n}]; Table[A208856[n], {n,0,50}] (* G. C. Greubel, Jun 19 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) - 1) / 2, n))}

Formula

Expansion of (f(x) / f(-x) - 1) / (2 * x) in powers of x where f() is a Ramanujan theta function.
Expansion of (f(x^14, x^34) - x^4 * f(x^2, x^46)) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 32 sequence [ 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, ...].
a(n) = A115671(n + 1). 2 * a(n) = A080054(n + 1). a(2*n) = A187154(n). a(2*n + 1) = A208851(n).

A093085 Expansion of phi(-x) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 1, 2, 0, 0, -1, -4, 0, 0, 0, 6, 0, 0, 1, -8, 0, 0, 0, 12, 0, 0, -1, -18, 0, 0, -1, 24, 0, 0, 2, -32, 0, 0, 1, 44, 0, 0, -2, -58, 0, 0, -1, 76, 0, 0, 2, -100, 0, 0, 1, 128, 0, 0, -3, -164, 0, 0, -1, 210, 0, 0, 4, -264, 0, 0, 2, 332, 0, 0, -5, -416, 0, 0, -2, 516, 0, 0, 5, -640, 0, 0, 2, 790, 0, 0, -6, -968
Offset: 0

Views

Author

Michael Somos, Mar 20 2004, Oct 22 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
eta(q^2) * eta(q^8)^6 = eta(q)^2 * eta(q^4)^2 * eta(q^8) * eta(q^16)^2 + 2 * eta(q^2) * eta(q^4)^2 * eta(q^16)^4 is equivalent to the a(4*n), ..., a(4*n + 3) results.

Examples

			G.f. = 1 - 2*x + x^4 + 2*x^5 - x^8 - 4*x^9 + 6*x^13 + x^16 - 8*x^17 + 12*x^21 - ...
G.f. = 1/q - 2*q + q^7 + 2*q^9 - q^15 - 4*q^17 + 6*q^25 + q^31 - 8*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 x^(1/2) EllipticTheta[ 4, 0, x] / EllipticTheta[ 2, 0, x^2], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^[ 0, 2, 1, 2, 2, 2, 1, 2][1 + k%8], 1 + x * O(x^n)), n))}
    
  • PARI
    {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = 4*A + 16*A^2 + (1 + 8*A) * sqrt(A + 4*A^2)); polcoeff( sqrt(x / A), n))}
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) / (eta(x^2 + A) * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(1/2) * eta(q)^2 * eta(q^4) / (eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, -1, -2, -2, -2, -1, -2, 0, ...].
Given g.f. A(x), then B(q) = A(q)^2 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u * (u + 8) * (v + 4) - v^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187154.
G.f.: Product_{k>0} (1 - x^k)^2 / ((1 - x^(4*k - 2)) * (1 - x^(8*k))^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A029838(n). a(4*n + 1) = -2 * A083365(n). Convolution square is A131124. Convolution inverse is A187154.
Showing 1-4 of 4 results.