A252117
Irregular triangle read by row: T(n,k), n>=1, k>=1, in which column k lists the numbers of A000716 multiplied by A000330(k), and the first element of column k is in row A000217(k).
Original entry on oeis.org
1, 3, 9, 5, 22, 15, 51, 45, 108, 110, 14, 221, 255, 42, 429, 540, 126, 810, 1105, 308, 1479, 2145, 714, 30, 2640, 4050, 1512, 90, 4599, 7395, 3094, 270, 7868, 13200, 6006, 660, 13209, 22995, 11340, 1530, 21843, 39340, 20706, 3240, 55, 35581, 66045, 36960, 6630, 165, 57222, 109215, 64386, 12870, 495
Offset: 1
Triangle begins:
1;
3;
9, 5;
22, 15;
51, 45;
108, 110, 14;
221, 255, 42;
429, 540, 126;
810, 1105, 308;
1479, 2145, 714, 30;
2640, 4050, 1512, 90;
4599, 7395, 3094, 270;
7868, 13200, 6006, 660;
13209, 22995, 11340, 1530;
21843, 39340, 20706, 3240, 55;
35581, 66045, 36960, 6630, 165;
57222, 109215, 64386, 12870, 495;
90882, 177905, 110152, 24300, 1210;
142769, 286110, 184926, 44370, 2805;
221910, 454410, 305802, 79200, 5940;
341649, 713845, 498134, 137970, 12155, 91;
...
For n = 6 the divisors of 6 are 1, 2, 3, 6, so the sum of the divisors of 6 is 1 + 2 + 3 + 6 = 12. On the other hand, the 6th row of the triangle is 108, 110, 14, so the alternating row sum is 108 - 110 + 14 = 12, equaling the sum of the divisors of 6.
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of the divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 21843, 39340, 20706, 3240, 55, so the alternating row sum is 21843 - 39340 + 20706 - 3240 + 55 = 24, equaling the sum of the divisors of 15.
A353689
Convolution of A000716 and the positive integers.
Original entry on oeis.org
1, 5, 18, 53, 139, 333, 748, 1592, 3246, 6379, 12152, 22524, 40764, 72213, 125505, 214378, 360473, 597450, 977196, 1578852, 2522157, 3986658, 6239619, 9675801, 14874445, 22679693, 34314378, 51539173, 76875314, 113913453, 167741728, 245534597, 357361857, 517293186
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*(2+3*numtheory[sigma](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, May 11 2022
-
nmax = 35; CoefficientList[Series[1/(1 - x)^2 * Product[1/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 11 2022 *)
-
lista(nn) = Vec(1/(eta('x+O('x^nn))^3*(1-x)^2)); \\ Michel Marcus, May 09 2022
A000203
a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).
Original entry on oeis.org
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1
For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
- H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
- Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
- M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
- A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
- G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
- Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 20000 terms from N. J. A. Sloane)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- B. Apostol and L. Petrescu, Extremal Orders of Certain Functions Associated with Regular Integers (mod n), Journal of Integer Sequences, 2013, # 13.7.5.
- Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
- M. Baake and U. Grimm, Quasicrystalline combinatorics
- Henry Bottomley, Illustration of initial terms
- C. K. Caldwell, The Prime Glossary, sigma function
- Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
- D. Christopher and T. Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012. - _N. J. A. Sloane_, Dec 25 2012
- R. L. Duncan, Note on the Divisors of a Number, The American Mathematical Monthly, 68(4), 356-359, (1961).
- Jason Earls, The Smarandache sum of composites between factors function, in Smarandache Notions Journal (2004), Vol. 14.1, page 243.
- L. Euler, Discovery of a most extraordinary law of numbers, relating to the sum of their divisors
- L. Euler, Observatio de summis divisorum
- L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009.
- J. A. Ewell, Recurrences for the sum of divisors, Proc. Amer. Math. Soc. 64 (2) 1977.
- Farideh Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors ..., J. Integer Seqs., Vol. 6, 2003.
- Johan Gielis and Ilia Tavkhelidze, The general case of cutting of GML surfaces and bodies, arXiv:1904.01414 [math.GM], 2019.
- J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167.
- J. W. L. Glaisher, On the function chi(n), Quarterly Journal of Pure and Applied Mathematics, 20 (1884), 97-167. [Annotated scanned copy]
- M. J. Grady, A group theoretic approach to a famous partition formula, Amer. Math. Monthly, 112 (No. 7, 2005), 645-651.
- Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], 2022.
- Douglas E. Iannucci, On sums of the small divisors of a natural number, arXiv:1910.11835 [math.NT], 2019.
- Antti Karttunen, Scheme program for computing this sequence.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113.
- M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math.CO/0503436, 2005.
- K. Matthews, Factorizing n and calculating phi(n),omega(n),d(n),sigma(n) and mu(n)
- Walter Nissen, Abundancy : Some Resources
- P. Pollack and C. Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26; errata.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903-1913.
- John S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Act. Cryst. (1992) A48, 500-508. - _N. J. A. Sloane_, Mar 14 2009
- John S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices II, Acta Cryst. A49 (1993), 293-300. - _N. J. A. Sloane_, Mar 14 2009
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 1]. - _N. J. A. Sloane_, Feb 23 2009
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Eric Weisstein's World of Mathematics, Divisor Function
- Wikipedia, Divisor function
- Index entries for sequences related to sublattices
- Index entries for sequences related to sigma(n)
- Index entries for "core" sequences
sigma_i (i=0..25):
A000005,
A000203,
A001157,
A001158,
A001159,
A001160,
A013954,
A013955,
A013956,
A013957,
A013958,
A013959,
A013960,
A013961,
A013962,
A013963,
A013964,
A013965,
A013966,
A013967,
A013968,
A013969,
A013970,
A013971,
A013972,
A281959.
Cf.
A144736,
A158951,
A158902,
A174740,
A147843,
A001158,
A001160,
A001065,
A002192,
A001001,
A001615 (primitive sublattices),
A039653,
A088580,
A074400,
A083728,
A006352,
A002659,
A083238,
A000593,
A050449,
A050452,
A051731,
A027748,
A124010,
A069192,
A057641,
A001318.
Cf. also
A034448 (sum of unitary divisors).
Cf.
A007955 (products of divisors).
-
A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
-
a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, May 07 2012
-
[SumOfDivisors(n): n in [1..70]];
-
[DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
-
with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
-
Table[ DivisorSigma[1, n], {n, 100}]
a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
-
makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
-
numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
-
{a(n) = if( n<1, 0, sigma(n))};
-
{a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
-
{a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
-
max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
-
from sympy import divisor_sigma
def a(n): return divisor_sigma(n, 1)
print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
-
from math import prod
from sympy import factorint
def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
(APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
-
[sigma(n, 1) for n in range(1, 71)] # Zerinvary Lajos, Jun 04 2009
-
(definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
-
(define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
A000712
Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 752, 1165, 1770, 2665, 3956, 5822, 8470, 12230, 17490, 24842, 35002, 49010, 68150, 94235, 129512, 177087, 240840, 326015, 439190, 589128, 786814, 1046705, 1386930, 1831065, 2408658, 3157789, 4126070, 5374390
Offset: 0
Assume there are integers of two kinds: k and k'; then a(3) = 10 since 3 has the following partitions into parts of two kinds: 111, 111', 11'1', 1'1'1', 12, 1'2, 12', 1'2', 3, and 3'. - _W. Edwin Clark_, Jun 24 2011
There are a(4)=20 partitions of 4 into 2 sorts of parts. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:0 1:1 ]
03: [ 1:0 1:0 1:1 1:1 ]
04: [ 1:0 1:1 1:1 1:1 ]
05: [ 1:1 1:1 1:1 1:1 ]
06: [ 2:0 1:0 1:0 ]
07: [ 2:0 1:0 1:1 ]
08: [ 2:0 1:1 1:1 ]
09: [ 2:0 2:0 ]
10: [ 2:0 2:1 ]
11: [ 2:1 1:0 1:0 ]
12: [ 2:1 1:0 1:1 ]
13: [ 2:1 1:1 1:1 ]
14: [ 2:1 2:1 ]
15: [ 3:0 1:0 ]
16: [ 3:0 1:1 ]
17: [ 3:1 1:0 ]
18: [ 3:1 1:1 ]
19: [ 4:0 ]
20: [ 4:1 ]
- _Joerg Arndt_, Apr 28 2013
The a(4)=20 ordered pairs (R,S) of partitions for n=4 are
([4], [])
([3, 1], [])
([2, 2], [])
([2, 1, 1], [])
([1, 1, 1, 1], [])
([3], [1])
([2, 1], [1])
([1, 1, 1], [1])
([2], [2])
([2], [1, 1])
([1, 1], [2])
([1, 1], [1, 1])
([1], [3])
([1], [2, 1])
([1], [1, 1, 1])
([], [4])
([], [3, 1])
([], [2, 2])
([], [2, 1, 1])
([], [1, 1, 1, 1])
This list was created with the Sage command
for P in PartitionTuples(2,4) : print P;
- _Joerg Arndt_, Apr 29 2013
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + ...
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Proposition 2.5.2 on page 78.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)
- Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, Macdonald trees and determinants of representations for finite Coxeter groups, arXiv:1812.00608 [math.RT], 2018.
- M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984) 3171, table 1.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- E. R. Canfield, C. D. Savage and H. S. Wilf, Regularly spaced subsums of integer partitions, arXiv:math/0308061 [math.CO], 2003.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Hilbert Space Fragmentation in the Chiral Luttinger Liquid, arXiv:2409.10359 [cond-mat.str-el], 2024. See pp. 8, 11.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Momentum-space modulated symmetries in the Luttinger liquid, Phys. Rev. B (2025) Vol. 111, Art. No. 165105. See p. 9.
- B. F. Chen, E. Ghorbani, and K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, Electronic J. Combin. 20(4) (2013), #P22.
- W. Y. C. Chen, K. Q. Ji and H. S. Wilf, BG-ranks and 2-cores, arXiv:math/0605474 [math.CO], 2006.
- W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, arXiv preprint arXiv:1107.5777 [math.RA], 2011.
- W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian Groups, and Sequence A000712 arXiv:1108.2215 [math.CO], Aug 10, 2011. [added by Jonathan Vos Post]
- Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- M. De Salvo, D. Fasino, D. Freni, and G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and sequence A000712, Journal of Algebra, Volume 415, 1 October 2014, pp. 65-87.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat (2018) Vol. 32, No. 12, 4177-4194.
- Paul Hammond and Richard Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci. (2004), no.45--48, 2509--2512.
- Ruth Hoffmann, Özgür Akgün, and Christopher Jefferson, Composable Constraint Models for Permutation Enumeration, arXiv:2311.17581 [cs.DM], 2023.
- Saud Hussein, An Identity for the Partition Function Involving Parts of k Different Magnitudes, arXiv:1806.05416 [math.NT], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 129.
- Han Mao Kiah, Anshoo Tandon, and Mehul Motani, Generalized Sphere-Packing Bound for Subblock-Constrained Codes, arXiv:1901.00387 [cs.IT], 2019.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Yen-chi R. Lin and Shu-Yen Pan, A recursive relation for bipartition numbers, arXiv:2406.14851 [math.CO], 2024.
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- Sylvain Prolhac, Spectrum of the totally asymmetric simple exclusion process on a periodic lattice--first excited states, arXiv preprint arXiv:1404.1315 [cond-mat.stat-mech], 2014.
- N. J. A. Sloane, Transforms.
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
-
a000712 = p a008619_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
# DedekindEta is defined in A000594.
A000712List(len) = DedekindEta(len, -2)
A000712List(39) |> println # Peter Luschny, Mar 09 2018
-
with(combinat): A000712:= n-> add(numbpart(k)*numbpart(n-k), k=0..n): seq(A000712(n), n=0..40); # Emeric Deutsch
-
CoefficientList[ Series[ Product[1/(1 - x^n)^2, {n, 40}], {x, 0, 37}], x]; (* Robert G. Wilson v, Feb 03 2005 *)
Table[Count[Partitions[2*n], q_ /; Tr[(-1)^Mod[Flatten[Position[q, ?OddQ]], 2]] === 0], {n, 12}] (* _Wouter Meeussen, Apr 17 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^-2, {x, 0, n}]; (* Michael Somos, Oct 12 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@n], {n, 0, 15}] (* Robert Price, Jun 15 2020 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))}; /* Michael Somos, Nov 14 2002 */
-
Vec(1/eta('x+O('x^66))^2) /* Joerg Arndt, Jun 25 2011 */
-
from sympy import npartitions
def A000712(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) # Chai Wah Wu, Sep 25 2023
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1, 2, 2)
b = EulerTransform(a)
print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
More terms from Joe Keane (jgk(AT)jgk.org), Nov 17 2001
More terms from Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
A144064
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 5, 9, 14, 20, ...
0, 3, 10, 22, 40, 65, ...
0, 5, 20, 51, 105, 190, ...
0, 7, 36, 108, 252, 506, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48. See Table 1.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Columns k=0-24 give:
A000007,
A000041,
A000712,
A000716,
A023003,
A023004,
A023005,
A023006,
A023007,
A023008,
A023009,
A023010,
A005758,
A023011,
A023012,
A023013,
A023014,
A023015,
A023016,
A023017,
A023018,
A023019,
A023020,
A023021,
A006922.
-
# DedekindEta is defined in A000594.
A144064Column(k, len) = DedekindEta(len, -k)
for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
-
Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024
A008485
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^n.
Original entry on oeis.org
1, 1, 5, 22, 105, 506, 2492, 12405, 62337, 315445, 1605340, 8207563, 42124380, 216903064, 1119974875, 5796944357, 30068145905, 156250892610, 813310723925, 4239676354650, 22130265931900, 115654632452535, 605081974091875, 3168828466966388, 16610409114771900
Offset: 0
T. Forbes (anthony.d.forbes(AT)googlemail.com)
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:= n-> etr(j->n)(n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
-
a[n_] := SeriesCoefficient[ Product[1/(1-x^k)^n, {k, 1, n}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Feb 24 2015 *)
Table[SeriesCoefficient[1/QPochhammer[x, x]^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 25 2016 *)
Table[SeriesCoefficient[Exp[n*Sum[x^j/(j*(1-x^j)), {j, 1, n}]], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2018 *)
-
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k +x*O(x^n))^n),n)}
-
{a(n)=n*polcoeff(log(1/x*serreverse(x*eta(x+x*O(x^n)))), n)} /* Paul D. Hanna, Apr 05 2012 */
A067687
Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 3, 10, 22, 40, 65, ...
0, 5, 20, 51, 105, ...
0, 7, 36, 108, ...
0, 11, 65, ...
A210843
Level of the n-th plateau of the column k of the square array A195825, when k -> infinity.
Original entry on oeis.org
1, 4, 13, 35, 86, 194, 415, 844, 1654, 3133, 5773, 10372, 18240, 31449, 53292, 88873, 146095, 236977, 379746, 601656, 943305, 1464501, 2252961, 3436182, 5198644, 7805248, 11634685, 17224795, 25336141, 37038139, 53828275, 77792869
Offset: 1
Column 1 of A195825 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. So a(1) = 1.
Column 3 of A195825 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains only two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. So a(1)= 1 and a(2) = 2.
Column 6 of A195825 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. So a(1) = 1, a(2) = 4 and a(3) = 13.
-
CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^3,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)
A354650
G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
1, 1, 0, 3, 3, 1, 0, 9, 27, 30, 15, 3, 0, 22, 147, 340, 390, 246, 83, 12, 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55, 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273, 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428, 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752
Offset: 0
G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...
such that A = A(x,y) satisfies:
(1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
(3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
1, 1;
0, 3, 3, 1;
0, 9, 27, 30, 15, 3;
0, 22, 147, 340, 390, 246, 83, 12;
0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;
0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;
0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;
0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;
0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
A354649
G.f. A(x,y) satisfies: y = f(x,A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
-1, 1, 0, -3, 3, -1, 0, 9, -27, 30, -15, 3, 0, -22, 147, -340, 390, -246, 83, -12, 0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55, 0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273, 0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428, 0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752
Offset: 0
G.f.: A(x,y) = (-1 + y) - x*(3*y - 3*y^2 + y^3) + x^2*(9*y - 27*y^2 + 30*y^3 - 15*y^4 + 3*y^5) - x^3*(22*y - 147*y^2 + 340*y^3 - 390*y^4 + 246*y^5 - 83*y^6 + 12*y^7) + x^4*(51*y - 630*y^2 + 2530*y^3 - 5070*y^4 + 5928*y^5 - 4284*y^6 + 1908*y^7 - 486*y^8 + 55*y^9) - x^5*(108*y - 2295*y^2 + 14595*y^3 - 45450*y^4 + 83559*y^5 - 98910*y^6 + 78282*y^7 - 41580*y^8 + 14355*y^9 - 2937*y^10 + 273*y^11) + x^6*(221*y - 7476*y^2 + 70737*y^3 - 319605*y^4 + 849450*y^5 - 1472261*y^6 + 1757688*y^7 - 1484451*y^8 + 891890*y^9 - 375442*y^10 + 105930*y^11 - 18109*y^12 + 1428*y^13) + x^7*(-429*y + 22302*y^2 - 301070*y^3 + 1886010*y^4 - 6878907*y^5 + 16386636*y^6 - 27205308*y^7 + 32683680*y^8 - 28981855*y^9 + 19081854*y^10 - 9258678*y^11 + 3231514*y^12 - 771225*y^13 + 113220*y^14 - 7752*y^15) + x^8*(810*y - 62100*y^2 + 1157820*y^3 - 9729720*y^4 + 46977378*y^5 - 147584556*y^6 + 324283068*y^7 - 520974180*y^8 + 628884300*y^9 - 579226362*y^10 + 409367712*y^11 - 221218179*y^12 + 90115620*y^13 - 26879160*y^14 + 5559408*y^15 - 715122*y^16 + 43263*y^17) + ...
such that A = A(x,y) satisfies:
(1) y = ... + x^36*A^28 + x^28*A^21 + x^21*A^15 + x^15*A^10 + x^10*A^6 + x^6*A^3 + x^3*A + x + 1 + A + x*A^3 + x^3*A^6 + x^6*A^10 + x^10*A^15 + x^15*A^21 + x^21*A^28 + x^28*A^36 + ...
(2) y = (1 - x*A)*(1 + A)*(1+x) * (1 - x^2*A^2)*(1 + x*A^2)*(1 + x^2*A) * (1 - x^3*A^3)*(1 + x^2*A^3)*(1 + x^3*A^2) * (1 - x^4*A^4)*(1 + x^3*A^4)*(1 + x^4*A^3) * (1 - x^5*A^5)*(1 + x^4*A^5)*(1 + x^5*A^4) * ...
(3) y = (1+x) + (1+x^3)*A + x*(1+x^5)*A^3 + x^3*(1+x^7)*A^6 + x^6*(1+x^9)*A^10 + x^10*(1+x^11)*A^15 + x^15*(1+x^13)*A^21 + x^21*(1+x^15)*A^28 + ...
(4) y = (1+A) + (1+A^3)*x + A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 + A^10*(1+A^11)*x^15 + A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
-1, 1;
0, -3, 3, -1;
0, 9, -27, 30, -15, 3;
0, -22, 147, -340, 390, -246, 83, -12;
0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55;
0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273;
0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428;
0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752;
0, 810, -62100, 1157820, -9729720, 46977378, -147584556, 324283068, -520974180, 628884300, -579226362, 409367712, -221218179, 90115620, -26879160, 5559408, -715122, 43263; ...
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[y-1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y - sum(m=0,sqrtint(2*#A+9), x^(m*(m-1)/2) * (1 + x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
H=A; polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
Showing 1-10 of 35 results.
Comments