A354650
G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
1, 1, 0, 3, 3, 1, 0, 9, 27, 30, 15, 3, 0, 22, 147, 340, 390, 246, 83, 12, 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55, 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273, 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428, 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752
Offset: 0
G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...
such that A = A(x,y) satisfies:
(1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
(3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
1, 1;
0, 3, 3, 1;
0, 9, 27, 30, 15, 3;
0, 22, 147, 340, 390, 246, 83, 12;
0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;
0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;
0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;
0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;
0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
A354662
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 2, 6, 32, 190, 1236, 8482, 60434, 442788, 3315046, 25249888, 195040914, 1524256336, 12030033178, 95748941322, 767655502862, 6193902044684, 50257335231264, 409825115116030, 3356850545246400, 27606085924603602, 227850606781308660, 1886792409865105988
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 32*x^3 + 190*x^4 + 1236*x^5 + 8482*x^6 + 60434*x^7 + 442788*x^8 + 3315046*x^9 + 25249888*x^10 + ...
such that A = A(x) satisfies:
(1) 2 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 2 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 2 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 2 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff(-2 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354652
G.f. A(x) satisfies: -2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
3, 26, 702, 24312, 964654, 41438412, 1876038114, 88154317378, 4258925591364, 210228411365958, 10556622328639744, 537564689914558410, 27693960347082015456, 1440798064785384773930, 75590961232091579641890, 3994794446280096850372038, 212460780898577846286309772
Offset: 0
G.f.: A(x) = 3 + 26*x + 702*x^2 + 24312*x^3 + 964654*x^4 + 41438412*x^5 + 1876038114*x^6 + 88154317378*x^7 + 4258925591364*x^8 + ...
such that A = A(x) satisfies:
(1) -2 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -2 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -2 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -2 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, r*s] * QPochhammer[1/s, r*s] * QPochhammer[r*s] / ((-1 + r)*(-1 + s)) == -2, -2*(-1 + r)*(-1 + s)*Log[r*s] * Derivative[0, 1][QPochhammer][1/r, r*s] / QPochhammer[1/r, r*s] + r*s*Log[r*s] * QPochhammer[1/r, r*s] * QPochhammer[r*s, r*s] * Derivative[0, 1][QPochhammer][1/s, r*s] + (2*(-1 + r)*(QPochhammer[r*s, r*s]*(Log[r*s] + (-1 + s)*QPolyGamma[0, 1, r*s] - (-1 + s)* QPolyGamma[0, -Log[s]/Log[r*s], r*s]) - r*(-1 + s)*s*Log[r*s] * Derivative[0, 1][QPochhammer][ r*s, r*s])) / (r*s*QPochhammer[r*s, r*s]) == 0}, {r, 1/58}, {s, 4}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
-
{a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(2 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
for(n=0,30,print1(a(n),", "))
A354653
G.f. A(x) satisfies: -3 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
4, 63, 3024, 188688, 13492350, 1044853344, 85281392688, 7224776707896, 629288553814092, 56002675660109424, 5070000855941708292, 465454828626459320736, 43230859988456631732954, 4054827527508982869148392, 383529048423080768494135488, 36541031890621600233033859488
Offset: 0
G.f.: A(x) = 4 + 63*x + 3024*x^2 + 188688*x^3 + 13492350*x^4 + 1044853344*x^5 + 85281392688*x^6 + 7224776707896*x^7 + 629288553814092*x^8 + ...
such that A = A(x) satisfies:
(1) -3 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -3 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -3 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -3 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[4]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(3 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354654
G.f. A(x) satisfies: -4 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
5, 124, 9300, 912520, 102616748, 12498655200, 1604505393140, 213790010204692, 29287693334340840, 4099332312599011100, 583685111605968443456, 84277588096627459702860, 12310921909740521584887824, 1816058097888803062860159620, 270156262107594683175523302780
Offset: 0
G.f.: A(x) = 5 + 124*x + 9300*x^2 + 912520*x^3 + 102616748*x^4 + 12498655200*x^5 + 1604505393140*x^6 + 213790010204692*x^7 + 29287693334340840*x^8 + ...
such that A = A(x) satisfies:
(1) -4 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -4 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -4 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -4 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[5]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(4 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354661
G.f. A(x) satisfies: 1 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2), with A(0) = 0.
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 8, 0, 0, 44, 0, 6, 280, 0, 96, 1934, 0, 1124, 14088, 18, 11792, 106536, 648, 117626, 828360, 13416, 1142288, 6580780, 216000, 10921088, 53184864, 3019614, 103408416, 435930008, 38629656, 973041448, 3615741192, 465419760, 9118011128, 30298375236
Offset: 1
G.f.: A(x) = x + 2*x^4 + 8*x^7 + 44*x^10 + 6*x^12 + 280*x^13 + 96*x^15 + 1934*x^16 + 1124*x^18 + 14088*x^19 + 18*x^20 + 11792*x^21 + ...
such that A = A(x) satisfies:
(1) 1 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 1 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 1 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 1 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[0]); for(i=0,n, A = concat(A,0);
A[#A] = -polcoeff(-1 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
for(n=1,50,print1(a(n),", "))
A354663
G.f. A(x) satisfies: 3 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
2, 9, 108, 1848, 36306, 771768, 17280096, 401451192, 9587095686, 233892105912, 5804193409056, 146051807458320, 3717875447707254, 95571022734750600, 2477365983601721280, 64684289495622383472, 1699638032224106092368, 44909438746576707103608
Offset: 0
G.f.: A(x) = 2 + 9*x + 108*x^2 + 1848*x^3 + 36306*x^4 + 771768*x^5 + 17280096*x^6 + 401451192*x^7 + 9587095686*x^8 + 233892105912*x^9 + ...
such that A = A(x) satisfies:
(1) 3 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 3 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 3 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 3 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[2]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff(-3 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
for(n=0,30,print1(a(n),", "))
A354664
G.f. A(x) satisfies: 4 = Sum_{n=-oo..oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
3, 28, 756, 28200, 1205228, 55731456, 2714642292, 137199520340, 7127794098792, 378292284479388, 20421818573265728, 1117886561607128940, 61904487399635790288, 3461693986652051482948, 195203095905903229325340, 11087371481682320212435332, 633751222047605882649272600
Offset: 0
G.f.: A(x) = 3 + 28*x + 756*x^2 + 28200*x^3 + 1205228*x^4 + 55731456*x^5 + 2714642292*x^6 + 137199520340*x^7 + 7127794098792*x^8 + ...
such that A = A(x) satisfies:
(1) 4 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 4 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 4 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 4 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, -r*s] * QPochhammer[-1/s, -r*s] * QPochhammer[-r*s]/((-1 + r)*(1 + s)) == 4, -4*(Log[-r*s] - (1 + s)*QPolyGamma[0, 1, -r*s] + (1 + s) * QPolyGamma[0, -Log[-s]/Log[-r*s], -r*s]) / (s*Log[-r*s]) + 4*r*(1 + s) * Derivative[0, 1][QPochhammer][1/r, -r*s] / QPochhammer[1/r, -r*s] + r^2*s*QPochhammer[1/r, -r*s]*QPochhammer[-r*s] * Derivative[0, 1][QPochhammer][-1/s, -r*s]/(-1 + r) + 4*r*(1 + s)*Derivative[0, 1][QPochhammer][-r*s, -r*s] / QPochhammer[-r*s] == 0}, {r, 1/50}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
-
{a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff(-4 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
for(n=0,30,print1(a(n),", "))
A354655
Column 2 of triangle A354650: a(n) = A354650(n,2), for n >= 1.
Original entry on oeis.org
3, 27, 147, 630, 2295, 7476, 22302, 62100, 163260, 409080, 983367, 2280306, 5122026, 11184075, 23806575, 49521456, 100872135, 201558231, 395675475, 764130780, 1453424259, 2725614243, 5044092372, 9219499800, 16655554125, 29759775435, 52623867051
Offset: 1
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=1,30,print1(A354650(n,2),", "))
A354658
A diagonal of triangle A354650: a(n) = A354650(n,n), for n >= 0.
Original entry on oeis.org
1, 3, 27, 340, 5070, 83559, 1472261, 27205308, 520974180, 10257025240, 206469879462, 4232227325352, 88073315164471, 1856404180514940, 39560345751767970, 851083806077023888, 18462636758298743712, 403459312929849694791, 8874351725505564788350
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,n),", "))
Showing 1-10 of 16 results.
Comments