A354655
Column 2 of triangle A354650: a(n) = A354650(n,2), for n >= 1.
Original entry on oeis.org
3, 27, 147, 630, 2295, 7476, 22302, 62100, 163260, 409080, 983367, 2280306, 5122026, 11184075, 23806575, 49521456, 100872135, 201558231, 395675475, 764130780, 1453424259, 2725614243, 5044092372, 9219499800, 16655554125, 29759775435, 52623867051
Offset: 1
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=1,30,print1(A354650(n,2),", "))
A354658
A diagonal of triangle A354650: a(n) = A354650(n,n), for n >= 0.
Original entry on oeis.org
1, 3, 27, 340, 5070, 83559, 1472261, 27205308, 520974180, 10257025240, 206469879462, 4232227325352, 88073315164471, 1856404180514940, 39560345751767970, 851083806077023888, 18462636758298743712, 403459312929849694791, 8874351725505564788350
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,n),", "))
A354656
Column 3 of triangle A354650: a(n) = A354650(n,3), for n >= 1.
Original entry on oeis.org
1, 30, 340, 2530, 14595, 70737, 301070, 1157820, 4100785, 13563010, 42321840, 125586440, 356621070, 973989030, 2569116330, 6567458520, 16317741975, 39504992395, 93390535840, 215983566780, 489454806785, 1088433416785, 2378160809610, 5111208572940, 10816601842950
Offset: 1
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=1,30,print1(A354650(n,3),", "))
A354659
A diagonal of triangle A354650: a(n) = A354650(n,n+1), for n >= 0.
Original entry on oeis.org
1, 3, 30, 390, 5928, 98910, 1757688, 32683680, 628884300, 12428334215, 250940544738, 5156722096422, 107538413657010, 2270751678647100, 48464836803383400, 1044050265679857144, 22675350105240015204, 496034970650911331550, 10920742396832034391590
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,n+1),", "))
Original entry on oeis.org
1, 3, 15, 83, 486, 2937, 18109, 113220, 715122, 4552229, 29156985, 187683795, 1213110600, 7868238588, 51184173036, 333809308696, 2181842704602, 14288748463485, 93737673347185, 615889045662345, 4052198020223430, 26694405836621985, 176052003674681925
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,2*n),", "))
A354649
G.f. A(x,y) satisfies: y = f(x,A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.
Original entry on oeis.org
-1, 1, 0, -3, 3, -1, 0, 9, -27, 30, -15, 3, 0, -22, 147, -340, 390, -246, 83, -12, 0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55, 0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273, 0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428, 0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752
Offset: 0
G.f.: A(x,y) = (-1 + y) - x*(3*y - 3*y^2 + y^3) + x^2*(9*y - 27*y^2 + 30*y^3 - 15*y^4 + 3*y^5) - x^3*(22*y - 147*y^2 + 340*y^3 - 390*y^4 + 246*y^5 - 83*y^6 + 12*y^7) + x^4*(51*y - 630*y^2 + 2530*y^3 - 5070*y^4 + 5928*y^5 - 4284*y^6 + 1908*y^7 - 486*y^8 + 55*y^9) - x^5*(108*y - 2295*y^2 + 14595*y^3 - 45450*y^4 + 83559*y^5 - 98910*y^6 + 78282*y^7 - 41580*y^8 + 14355*y^9 - 2937*y^10 + 273*y^11) + x^6*(221*y - 7476*y^2 + 70737*y^3 - 319605*y^4 + 849450*y^5 - 1472261*y^6 + 1757688*y^7 - 1484451*y^8 + 891890*y^9 - 375442*y^10 + 105930*y^11 - 18109*y^12 + 1428*y^13) + x^7*(-429*y + 22302*y^2 - 301070*y^3 + 1886010*y^4 - 6878907*y^5 + 16386636*y^6 - 27205308*y^7 + 32683680*y^8 - 28981855*y^9 + 19081854*y^10 - 9258678*y^11 + 3231514*y^12 - 771225*y^13 + 113220*y^14 - 7752*y^15) + x^8*(810*y - 62100*y^2 + 1157820*y^3 - 9729720*y^4 + 46977378*y^5 - 147584556*y^6 + 324283068*y^7 - 520974180*y^8 + 628884300*y^9 - 579226362*y^10 + 409367712*y^11 - 221218179*y^12 + 90115620*y^13 - 26879160*y^14 + 5559408*y^15 - 715122*y^16 + 43263*y^17) + ...
such that A = A(x,y) satisfies:
(1) y = ... + x^36*A^28 + x^28*A^21 + x^21*A^15 + x^15*A^10 + x^10*A^6 + x^6*A^3 + x^3*A + x + 1 + A + x*A^3 + x^3*A^6 + x^6*A^10 + x^10*A^15 + x^15*A^21 + x^21*A^28 + x^28*A^36 + ...
(2) y = (1 - x*A)*(1 + A)*(1+x) * (1 - x^2*A^2)*(1 + x*A^2)*(1 + x^2*A) * (1 - x^3*A^3)*(1 + x^2*A^3)*(1 + x^3*A^2) * (1 - x^4*A^4)*(1 + x^3*A^4)*(1 + x^4*A^3) * (1 - x^5*A^5)*(1 + x^4*A^5)*(1 + x^5*A^4) * ...
(3) y = (1+x) + (1+x^3)*A + x*(1+x^5)*A^3 + x^3*(1+x^7)*A^6 + x^6*(1+x^9)*A^10 + x^10*(1+x^11)*A^15 + x^15*(1+x^13)*A^21 + x^21*(1+x^15)*A^28 + ...
(4) y = (1+A) + (1+A^3)*x + A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 + A^10*(1+A^11)*x^15 + A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
-1, 1;
0, -3, 3, -1;
0, 9, -27, 30, -15, 3;
0, -22, 147, -340, 390, -246, 83, -12;
0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55;
0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273;
0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428;
0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752;
0, 810, -62100, 1157820, -9729720, 46977378, -147584556, 324283068, -520974180, 628884300, -579226362, 409367712, -221218179, 90115620, -26879160, 5559408, -715122, 43263; ...
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
-
{T(n,k) = my(A=[y-1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y - sum(m=0,sqrtint(2*#A+9), x^(m*(m-1)/2) * (1 + x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
H=A; polcoeff(A[n+1],k,y)}
for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))
A268299
G.f. A(x) satisfies: -1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x).
Original entry on oeis.org
2, 7, 84, 1240, 20942, 382344, 7354688, 146810440, 3012778758, 63167322872, 1347251937632, 29138746861200, 637584335364362, 14088532800477752, 313936020646727040, 7046500093908958288, 159171390375064583380, 3615669944253537267048, 82541551931101193203004, 1892725670848222011475776, 43575217427267416453289838, 1006843304895182755611475824, 23340548167572913996786290328
Offset: 1
G.f.: A(x) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...
where A(x) satisfies the Jacobi Triple Product:
-1 = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +...
also
1/x = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *...
further,
-1 = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +...
RELATED SERIES.
The series reversion of g.f. A(x) equals x*Q(x), where Q(x) begins:
Q(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 - 1979248977748/2*x^10/4^10 +...+ A268301(n)/2*x^n/4^n +...
and where Q(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x*Q(x))*(1-1/Q(x)) * (1-x^2)*(1-x^2*Q(x))*(1-x/Q(x)) * (1-x^3)*(1-x^3*Q(x))*(1-x^2/Q(x)) * (1-x^4)*(1-x^4*Q(x))*(1-x^3/Q(x)) * (1-x^5)*(1-x^5*Q(x))*(1-x^4/Q(x)) * (1-x^6)*(1-x^6*Q(x))*(1-x^5/Q(x)) *...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*QPochhammer[1/r, s]*QPochhammer[r, s]* QPochhammer[s, s] == 1 - r, (Log[1 - s] + QPolyGamma[0, 1, s])/(s*Log[s]) - Derivative[0, 1][QPochhammer][1/r, s]/QPochhammer[1/r, s] - Derivative[0, 1][QPochhammer][r, s]/QPochhammer[r, s] - Derivative[0, 1][QPochhammer][s, s]/ QPochhammer[s, s] == 0}, {r, 1/24}, {s, 1/8}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
-
{a(n) = my(Q=1/2, t=floor(sqrt(2*n+1)+1/2)); for(i=0, n, Q = (Q + sum(m=-t, t, x^(m*(m-1)/2) * (-Q)^m +x*O(x^n)) )/2 ); polcoeff(serreverse(x*Q), n)}
for(n=1, 30, print1(a(n), ", "))
A355350
G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
Offset: 0
G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
-
{T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))
A354662
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 2, 6, 32, 190, 1236, 8482, 60434, 442788, 3315046, 25249888, 195040914, 1524256336, 12030033178, 95748941322, 767655502862, 6193902044684, 50257335231264, 409825115116030, 3356850545246400, 27606085924603602, 227850606781308660, 1886792409865105988
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 32*x^3 + 190*x^4 + 1236*x^5 + 8482*x^6 + 60434*x^7 + 442788*x^8 + 3315046*x^9 + 25249888*x^10 + ...
such that A = A(x) satisfies:
(1) 2 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 2 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 2 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 2 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff(-2 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354652
G.f. A(x) satisfies: -2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
3, 26, 702, 24312, 964654, 41438412, 1876038114, 88154317378, 4258925591364, 210228411365958, 10556622328639744, 537564689914558410, 27693960347082015456, 1440798064785384773930, 75590961232091579641890, 3994794446280096850372038, 212460780898577846286309772
Offset: 0
G.f.: A(x) = 3 + 26*x + 702*x^2 + 24312*x^3 + 964654*x^4 + 41438412*x^5 + 1876038114*x^6 + 88154317378*x^7 + 4258925591364*x^8 + ...
such that A = A(x) satisfies:
(1) -2 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -2 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -2 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -2 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, r*s] * QPochhammer[1/s, r*s] * QPochhammer[r*s] / ((-1 + r)*(-1 + s)) == -2, -2*(-1 + r)*(-1 + s)*Log[r*s] * Derivative[0, 1][QPochhammer][1/r, r*s] / QPochhammer[1/r, r*s] + r*s*Log[r*s] * QPochhammer[1/r, r*s] * QPochhammer[r*s, r*s] * Derivative[0, 1][QPochhammer][1/s, r*s] + (2*(-1 + r)*(QPochhammer[r*s, r*s]*(Log[r*s] + (-1 + s)*QPolyGamma[0, 1, r*s] - (-1 + s)* QPolyGamma[0, -Log[s]/Log[r*s], r*s]) - r*(-1 + s)*s*Log[r*s] * Derivative[0, 1][QPochhammer][ r*s, r*s])) / (r*s*QPochhammer[r*s, r*s]) == 0}, {r, 1/58}, {s, 4}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
-
{a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(2 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
for(n=0,30,print1(a(n),", "))
Showing 1-10 of 17 results.
Comments