cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A354655 Column 2 of triangle A354650: a(n) = A354650(n,2), for n >= 1.

Original entry on oeis.org

3, 27, 147, 630, 2295, 7476, 22302, 62100, 163260, 409080, 983367, 2280306, 5122026, 11184075, 23806575, 49521456, 100872135, 201558231, 395675475, 764130780, 1453424259, 2725614243, 5044092372, 9219499800, 16655554125, 29759775435, 52623867051
Offset: 1

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=1,30,print1(A354650(n,2),", "))

Formula

a(n) = (-1)^(n+1) * A354649(n,2), for n >= 1.
a(n) = A354650(n,2), for n >= 1.

A354658 A diagonal of triangle A354650: a(n) = A354650(n,n), for n >= 0.

Original entry on oeis.org

1, 3, 27, 340, 5070, 83559, 1472261, 27205308, 520974180, 10257025240, 206469879462, 4232227325352, 88073315164471, 1856404180514940, 39560345751767970, 851083806077023888, 18462636758298743712, 403459312929849694791, 8874351725505564788350
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0,20,print1(A354650(n,n),", "))

Formula

a(n) = -A354649(n,n), for n >= 0.
a(n) = A354650(n,n), for n >= 0.
a(n) ~ c * d^n / n^2, where d = 24.575992877869992813144975... and c = 0.285171824264368179079895... - Vaclav Kotesovec, Jun 08 2022

A354656 Column 3 of triangle A354650: a(n) = A354650(n,3), for n >= 1.

Original entry on oeis.org

1, 30, 340, 2530, 14595, 70737, 301070, 1157820, 4100785, 13563010, 42321840, 125586440, 356621070, 973989030, 2569116330, 6567458520, 16317741975, 39504992395, 93390535840, 215983566780, 489454806785, 1088433416785, 2378160809610, 5111208572940, 10816601842950
Offset: 1

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=1,30,print1(A354650(n,3),", "))

Formula

a(n) = (-1)^n * A354649(n,3), for n >= 1.
a(n) = A354650(n,3), for n >= 1.

A354659 A diagonal of triangle A354650: a(n) = A354650(n,n+1), for n >= 0.

Original entry on oeis.org

1, 3, 30, 390, 5928, 98910, 1757688, 32683680, 628884300, 12428334215, 250940544738, 5156722096422, 107538413657010, 2270751678647100, 48464836803383400, 1044050265679857144, 22675350105240015204, 496034970650911331550, 10920742396832034391590
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0,20,print1(A354650(n,n+1),", "))

Formula

a(n) = A354649(n,n+1), for n >= 0.
a(n) = A354650(n,n+1), for n >= 0.
a(n) ~ c * d^n / n^2, where d = 24.5759928778699928131449756... and c = 0.35661791857107638456206... - Vaclav Kotesovec, Mar 19 2023

A354660 a(n) = A354650(n,2*n), for n >= 0.

Original entry on oeis.org

1, 3, 15, 83, 486, 2937, 18109, 113220, 715122, 4552229, 29156985, 187683795, 1213110600, 7868238588, 51184173036, 333809308696, 2181842704602, 14288748463485, 93737673347185, 615889045662345, 4052198020223430, 26694405836621985, 176052003674681925
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0,20,print1(A354650(n,2*n),", "))

Formula

a(n) = (-1)^(n+1) * A354649(n,2*n), for n >= 0.
a(n) = A354650(n,2*n), for n >= 0.
a(n) ~ 13 * 3^(3*n - 5/2) / (sqrt(Pi*n) * 2^(2*n)). - Vaclav Kotesovec, Mar 19 2023

A354649 G.f. A(x,y) satisfies: y = f(x,A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.

Original entry on oeis.org

-1, 1, 0, -3, 3, -1, 0, 9, -27, 30, -15, 3, 0, -22, 147, -340, 390, -246, 83, -12, 0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55, 0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273, 0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428, 0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Comments

Signed version of A354650.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ) is the partition function.
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
T(n,1) = (-1)^n * A000716(n), for n >= 0.
T(n,2) = (-1)^(n+1) * A354655(n), for n >= 1.
T(n,3) = (-1)^n * A354656(n), for n >= 1.
T(n,n) = -A354658(n), for n >= 0.
T(n,n+1) = A354659(n), for n >= 0.
T(n,2*n) = (-1)^(n+1) * A354660(n), for n >= 0.
T(n,2*n+1) = (-1)^n * A001764(n), for n >= 0.
Antidiagonal sums equals signed A268650.
Sum_{k=0..2*n+1} T(n,k)*(-1)^k = (-1)^(n+1) * A268299(n+1), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-2)^k = (-1)^(n+1) * A354652(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-3)^k = (-1)^(n+1) * A354653(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-4)^k = (-1)^(n+1) * A354654(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k) = (-1)^n * A354661(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*2^k = (-1)^n * A354662(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*3^k = (-1)^n * A354663(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*4^k = (-1)^n * A354664(n), for n >= 0.
SPECIFIC VALUES.
(1) A(x,y) = exp(-Pi) at x = exp(-Pi), y = Pi^(1/4)/gamma(3/4).
(2) A(x,y) = exp(-2*Pi) at x = exp(-2*Pi), y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(3) A(x,y) = exp(-3*Pi) at x = exp(-3*Pi), y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(4) A(x,y) = exp(-4*Pi) at x = exp(-4*Pi), y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(5) A(x,y) = exp(-sqrt(3)*Pi) at x = exp(-sqrt(3)*Pi), y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = (-1 + y) - x*(3*y - 3*y^2 + y^3) + x^2*(9*y - 27*y^2 + 30*y^3 - 15*y^4 + 3*y^5) - x^3*(22*y - 147*y^2 + 340*y^3 - 390*y^4 + 246*y^5 - 83*y^6 + 12*y^7) + x^4*(51*y - 630*y^2 + 2530*y^3 - 5070*y^4 + 5928*y^5 - 4284*y^6 + 1908*y^7 - 486*y^8 + 55*y^9) - x^5*(108*y - 2295*y^2 + 14595*y^3 - 45450*y^4 + 83559*y^5 - 98910*y^6 + 78282*y^7 - 41580*y^8 + 14355*y^9 - 2937*y^10 + 273*y^11) + x^6*(221*y - 7476*y^2 + 70737*y^3 - 319605*y^4 + 849450*y^5 - 1472261*y^6 + 1757688*y^7 - 1484451*y^8 + 891890*y^9 - 375442*y^10 + 105930*y^11 - 18109*y^12 + 1428*y^13) + x^7*(-429*y + 22302*y^2 - 301070*y^3 + 1886010*y^4 - 6878907*y^5 + 16386636*y^6 - 27205308*y^7 + 32683680*y^8 - 28981855*y^9 + 19081854*y^10 - 9258678*y^11 + 3231514*y^12 - 771225*y^13 + 113220*y^14 - 7752*y^15) + x^8*(810*y - 62100*y^2 + 1157820*y^3 - 9729720*y^4 + 46977378*y^5 - 147584556*y^6 + 324283068*y^7 - 520974180*y^8 + 628884300*y^9 - 579226362*y^10 + 409367712*y^11 - 221218179*y^12 + 90115620*y^13 - 26879160*y^14 + 5559408*y^15 - 715122*y^16 + 43263*y^17) + ...
such that A = A(x,y) satisfies:
(1) y = ... + x^36*A^28 + x^28*A^21 + x^21*A^15 + x^15*A^10 + x^10*A^6 + x^6*A^3 + x^3*A + x + 1 + A + x*A^3 + x^3*A^6 + x^6*A^10 + x^10*A^15 + x^15*A^21 + x^21*A^28 + x^28*A^36 + ...
(2) y = (1 - x*A)*(1 + A)*(1+x) * (1 - x^2*A^2)*(1 + x*A^2)*(1 + x^2*A) * (1 - x^3*A^3)*(1 + x^2*A^3)*(1 + x^3*A^2) * (1 - x^4*A^4)*(1 + x^3*A^4)*(1 + x^4*A^3) * (1 - x^5*A^5)*(1 + x^4*A^5)*(1 + x^5*A^4) * ...
(3) y = (1+x) + (1+x^3)*A + x*(1+x^5)*A^3 + x^3*(1+x^7)*A^6 + x^6*(1+x^9)*A^10 + x^10*(1+x^11)*A^15 + x^15*(1+x^13)*A^21 + x^21*(1+x^15)*A^28 + ...
(4) y = (1+A) + (1+A^3)*x + A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 + A^10*(1+A^11)*x^15 + A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
-1, 1;
0, -3, 3, -1;
0, 9, -27, 30, -15, 3;
0, -22, 147, -340, 390, -246, 83, -12;
0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55;
0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273;
0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428;
0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752;
0, 810, -62100, 1157820, -9729720, 46977378, -147584556, 324283068, -520974180, 628884300, -579226362, 409367712, -221218179, 90115620, -26879160, 5559408, -715122, 43263; ...
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
		

Crossrefs

Cf. A000716 (column 1), A354655 (column 2), A354656 (column 3).
Cf. A354658 (T(n,n)), A354659 (T(n,n+1)), A354660 (T(n,2*n)), A001764 (right border).
Cf. A268299 (y=-1), A354652 (y=-2), A354653 (y=-3), A354654 (y=-4).
Cf. A354661 (y=1), A354662 (y=2), A354663 (y=3), A354664 (y=4).
Cf. A268650 (antidiagonal sums), A354657, A354650.

Programs

  • PARI
    {T(n,k) = my(A=[y-1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y - sum(m=0,sqrtint(2*#A+9), x^(m*(m-1)/2) * (1 + x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    H=A; polcoeff(A[n+1],k,y)}
    for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k)*y^k satisfies:
(1) y = A(x,f(x,y)) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k) * f(x,y)^k, where f(,) is Ramanujan's theta function.
(2) y = f(x,A(x,y)) = Sum_{n=-oo..oo} x^(n*(n-1)/2) * A(x,y)^(n*(n+1)/2), where f(,) is Ramanujan's theta function.
(3) y = Product_{n>=1} (1 - x^n*A(x,y)^n) * (1 + x^(n-1)*A(x,y)^n) * (1 + x^n*A(x,y)^(n-1)), by the Jacobi triple product identity.
(4) y = Sum_{n>=0} x^(n*(n-1)/2) * (1 + x^(2*n+1)) * A(x,y)^(n*(n+1)/2).
(5) y = Sum_{n>=0} A(x,y)^(n*(n-1)/2) * (1 + A(x,y)^(2*n+1)) * x^(n*(n+1)/2).
(6) T(n,1) = (-1)^n * A000716(n), where A000716(n) is the number of partitions of n into parts of 3 kinds.
(7) T(n,2*n+1) = (-1)^n * A001764(n) = (-1)^n * binomial(3*n,n)/(2*n+1), for n >= 0.

A268299 G.f. A(x) satisfies: -1 = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n/x) * (1 - A(x)^(n-1)*x).

Original entry on oeis.org

2, 7, 84, 1240, 20942, 382344, 7354688, 146810440, 3012778758, 63167322872, 1347251937632, 29138746861200, 637584335364362, 14088532800477752, 313936020646727040, 7046500093908958288, 159171390375064583380, 3615669944253537267048, 82541551931101193203004, 1892725670848222011475776, 43575217427267416453289838, 1006843304895182755611475824, 23340548167572913996786290328
Offset: 1

Views

Author

Paul D. Hanna, Feb 26 2016

Keywords

Comments

The g.f. utilizes the Jacobi Triple Product: Product_{n>=1} (1-x^n)*(1 - x^n/a)*(1 - x^(n-1)*a) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n.
Equals the row sums of triangle A354650. - Paul D. Hanna, Jul 27 2022

Examples

			G.f.: A(x) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...
where A(x) satisfies the Jacobi Triple Product:
-1 = (1-A(x))*(1-A(x)/x)*(1-x) * (1-A(x)^2)*(1-A(x)^2/x)*(1-A(x)*x) * (1-A(x)^3)*(1-A(x)^3/x)*(1-A(x)^2*x) * (1-A(x)^4)*(1-A(x)^4/x)*(1-A(x)^3*x) * (1-A(x)^5)*(1-A(x)^5/x)*(1-A(x)^4*x) * (1-A(x)^6)*(1-A(x)^6/x)*(1-A(x)^5*x) +...
also
1/x = (1-A(x))*(1-A(x)*x)*(1-1/x) * (1-A(x)^2)*(1-A(x)^2*x)*(1-A(x)/x) * (1-A(x)^3)*(1-A(x)^3*x)*(1-A(x)^2/x) * (1-A(x)^4)*(1-A(x)^4*x)*(1-A(x)^3/x) * (1-A(x)^5)*(1-A(x)^5*x)*(1-A(x)^4/x) * (1-A(x)^6)*(1-A(x)^6*x)*(1-A(x)^5/x) *...
further,
-1 = (1-x) - A(x)*(1-x^3)/x + A(x)^3*(1-x^5)/x^2 - A(x)^6*(1-x^7)/x^3 + A(x)^10*(1-x^9)/x^4 - A(x)^15*(1-x^11)/x^5 + A(x)^21*(1-x^13)/x^6 +...
RELATED SERIES.
The series reversion of g.f. A(x) equals x*Q(x), where Q(x) begins:
Q(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 - 1979248977748/2*x^10/4^10 +...+ A268301(n)/2*x^n/4^n +...
and where Q(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x*Q(x))*(1-1/Q(x)) * (1-x^2)*(1-x^2*Q(x))*(1-x/Q(x)) * (1-x^3)*(1-x^3*Q(x))*(1-x^2/Q(x)) * (1-x^4)*(1-x^4*Q(x))*(1-x^3/Q(x)) * (1-x^5)*(1-x^5*Q(x))*(1-x^4/Q(x)) * (1-x^6)*(1-x^6*Q(x))*(1-x^5/Q(x)) *...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{r*QPochhammer[1/r, s]*QPochhammer[r, s]* QPochhammer[s, s] == 1 - r, (Log[1 - s] + QPolyGamma[0, 1, s])/(s*Log[s]) - Derivative[0, 1][QPochhammer][1/r, s]/QPochhammer[1/r, s] - Derivative[0, 1][QPochhammer][r, s]/QPochhammer[r, s] - Derivative[0, 1][QPochhammer][s, s]/ QPochhammer[s, s] == 0}, {r, 1/24}, {s, 1/8}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 30 2023 *)
  • PARI
    {a(n) = my(Q=1/2, t=floor(sqrt(2*n+1)+1/2)); for(i=0, n, Q = (Q + sum(m=-t, t, x^(m*(m-1)/2) * (-Q)^m +x*O(x^n)) )/2 ); polcoeff(serreverse(x*Q), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) -1 = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-x)^n.
(2) -1 = Sum_{n>=0} A(x)^(n*(n+1)/2) * (1 - x^(2*n+1)) / (-x)^n.
(3) 1/x = Sum_{n=-oo..+oo} A(x)^(n*(n-1)/2) * (-1/x)^n.
(4) 1/x = Product_{n>=1} (1 - A(x)^n) * (1 - A(x)^n*x) * (1 - A(x)^(n-1)/x).
(5) A(x) = Series_Reversion( x*Q(x) ), where Q(x) is the g.f. of A268301 and satisfies: -1 = Product_{n>=1} (1-x^n) * (1 - x^n*Q(x)) * (1 - x^(n-1)/Q(x)).
(6) x = Sum_{n>=1} a(n) * x^n * Q(x)^n, where Q(x) = Sum_{n>=0} A268301(n)/2*(x/4)^n.
a(n) ~ c * d^n / n^(3/2), where d = 24.827421130209954998234265953843191542003179657... and c = 0.020386712793003585674903530668163000681070027... . - Vaclav Kotesovec, Mar 02 2016

A355350 G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
Conjectures:
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
(C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
		

Crossrefs

Cf. A355351 (row sums), A355352, A355353, A355354, A355355.
Cf. A355356, A355357, A354658 (central terms).
Cf. A354645, A354650 (related table), A000041, A000716, A023005.

Programs

  • PARI
    {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
    for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A354662 G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * A(x)^(n*(n-1)/2).

Original entry on oeis.org

1, 2, 6, 32, 190, 1236, 8482, 60434, 442788, 3315046, 25249888, 195040914, 1524256336, 12030033178, 95748941322, 767655502862, 6193902044684, 50257335231264, 409825115116030, 3356850545246400, 27606085924603602, 227850606781308660, 1886792409865105988
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 32*x^3 + 190*x^4 + 1236*x^5 + 8482*x^6 + 60434*x^7 + 442788*x^8 + 3315046*x^9 + 25249888*x^10 + ...
such that A = A(x) satisfies:
(1) 2 = ... + x^36*A^28 + x^28*A^21 - x^21*A^15 - x^15*A^10 + x^10*A^6 + x^6*A^3 - x^3*A - x + 1 + A - x*A^3 - x^3*A^6 + x^6*A^10 + x^10*A^15 - x^15*A^21 - x^21*A^28 + x^28*A^36 +--+ ...
(2) 2 = (1-x) + (1-x^3)*A - x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 + x^10*(1-x^11)*A^15 - x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) 2 = (1+A) - (1+A^3)*x - A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 - A^10*(1+A^11)*x^15 - A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
(4) 2 = (1 + x*A)*(1 + A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 + x^2*A) * (1 + x^3*A^3)*(1 + x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 + x^4*A^3) * (1 + x^5*A^5)*(1 + x^4*A^5)*(1 - x^5*A^4) * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = -polcoeff(-2 + sum(m=0,sqrtint(2*#A+9), (-x)^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 2 = Sum_{n=-oo..+oo} (-x)^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
(2) 2 = Sum_{n>=0} (-x)^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x)^(n*(n+1)/2).
(3) 2 = Sum_{n>=0} (-x)^(n*(n+1)/2) * (1 + A(x)^(2*n+1)) * A(x)^(n*(n-1)/2).
(4) 2 = Product_{n>=1} (1 - (-x)^n*A(x)^n) * (1 + (-x)^(n-1)*A(x)^n) * (1 + (-x)^n*A(x)^(n-1)), by the Jacobi triple product identity.
a(n) = (-1)^n * Sum_{k=0..2*n+1} A354649(n,k)*2^k, for n >= 0.
a(n) = -Sum_{k=0..2*n+1} A354650(n,k)*(-2)^k, for n >= 0.

A354652 G.f. A(x) satisfies: -2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).

Original entry on oeis.org

3, 26, 702, 24312, 964654, 41438412, 1876038114, 88154317378, 4258925591364, 210228411365958, 10556622328639744, 537564689914558410, 27693960347082015456, 1440798064785384773930, 75590961232091579641890, 3994794446280096850372038, 212460780898577846286309772
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Examples

			G.f.: A(x) = 3 + 26*x + 702*x^2 + 24312*x^3 + 964654*x^4 + 41438412*x^5 + 1876038114*x^6 + 88154317378*x^7 + 4258925591364*x^8 + ...
such that A = A(x) satisfies:
(1) -2 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -2 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -2 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -2 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{r*s * QPochhammer[1/r, r*s] * QPochhammer[1/s, r*s] * QPochhammer[r*s] / ((-1 + r)*(-1 + s)) == -2, -2*(-1 + r)*(-1 + s)*Log[r*s] * Derivative[0, 1][QPochhammer][1/r, r*s] / QPochhammer[1/r, r*s] + r*s*Log[r*s] * QPochhammer[1/r, r*s] * QPochhammer[r*s, r*s] * Derivative[0, 1][QPochhammer][1/s, r*s] + (2*(-1 + r)*(QPochhammer[r*s, r*s]*(Log[r*s] + (-1 + s)*QPolyGamma[0, 1, r*s] - (-1 + s)* QPolyGamma[0, -Log[s]/Log[r*s], r*s]) - r*(-1 + s)*s*Log[r*s] * Derivative[0, 1][QPochhammer][ r*s, r*s])) / (r*s*QPochhammer[r*s, r*s]) == 0}, {r, 1/58}, {s, 4}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
  • PARI
    {a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(2 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );H=A;A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) -2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
(2) -2 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x)^(n*(n+1)/2).
(3) -2 = Sum_{n>=0} (-1)^n * A(x)^(n*(n-1)/2) * (1 - A(x)^(2*n+1)) * x^(n*(n+1)/2).
(4) -2 = Product_{n>=1} (1 - x^n*A(x)^n) * (1 - x^(n-1)*A(x)^n) * (1 - x^n*A(x)^(n-1)), by the Jacobi triple product identity.
a(n) = (-1)^(n+1) * Sum_{k=0..2*n+1} A354649(n,k)*(-2)^k, for n >= 0.
a(n) = Sum_{k=0..2*n+1} A354650(n,k)*2^k, for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 58.4550529987436715308576941861333478321842744514285703940141525... and c = 0.757806366482059336893833755732847891553108700077361984219509... - Vaclav Kotesovec, Jun 08 2022
A(1/d) = 4.539776191075... where 1/d = 0.0171071609501661... and d is the value given above by Vaclav Kotesovec. - Paul D. Hanna, Jul 30 2022
Formula (4) can be rewritten as the functional equation QPochhammer(x*y) * QPochhammer(1/x, x*y)/(1 - 1/x) * QPochhammer(1/y, x*y)/(1 - 1/y) = -2. - Vaclav Kotesovec, Jan 19 2024
Showing 1-10 of 17 results. Next