cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354650 G.f. A(x,y) satisfies: -y = f(-x,-A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.

Original entry on oeis.org

1, 1, 0, 3, 3, 1, 0, 9, 27, 30, 15, 3, 0, 22, 147, 340, 390, 246, 83, 12, 0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55, 0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273, 0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428, 0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Comments

Unsigned version of A354649.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ) is the partition function.
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
T(n,1) = A000716(n), for n >= 0.
T(n,2) = A354655(n), for n >= 1.
T(n,3) = A354656(n), for n >= 1.
T(n,n) = A354658(n), for n >= 0.
T(n,n+1) = A354659(n), for n >= 0.
T(n,2*n) = A354660(n), for n >= 0.
T(n,2*n+1) = A001764(n), for n >= 0.
Antidiagonal sums = A268650.
Row sums = A268299 (with offset).
Sum_{k=0..2*n+1} T(n,k)*2^k = A354652(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*3^k = A354653(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*4^k = A354654(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-1)^k = -A354661(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-2)^k = -A354662(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-3)^k = -A354663(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-4)^k = -A354664(n), for n >= 0.
SPECIFIC VALUES.
(1) A(x,y) = -exp(-Pi) at x = -exp(-Pi), y = -Pi^(1/4)/gamma(3/4).
(2) A(x,y) = -exp(-2*Pi) at x = -exp(-2*Pi), y = -Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(3) A(x,y) = -exp(-3*Pi) at x = -exp(-3*Pi), y = -Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(4) A(x,y) = -exp(-4*Pi) at x = -exp(-4*Pi), y = -Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(5) A(x,y) = -exp(-sqrt(3)*Pi) at x = -exp(-sqrt(3)*Pi), y = -gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = (1 + y) + x*(3*y + 3*y^2 + y^3) + x^2*(9*y + 27*y^2 + 30*y^3 + 15*y^4 + 3*y^5) + x^3*(22*y + 147*y^2 + 340*y^3 + 390*y^4 + 246*y^5 + 83*y^6 + 12*y^7) + x^4*(51*y + 630*y^2 + 2530*y^3 + 5070*y^4 + 5928*y^5 + 4284*y^6 + 1908*y^7 + 486*y^8 + 55*y^9) + x^5*(108*y + 2295*y^2 + 14595*y^3 + 45450*y^4 + 83559*y^5 + 98910*y^6 + 78282*y^7 + 41580*y^8 + 14355*y^9 + 2937*y^10 + 273*y^11) + ...
such that A = A(x,y) satisfies:
(1) -y = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -y = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
(3) -y = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(4) -y = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
1, 1;
0, 3, 3, 1;
0, 9, 27, 30, 15, 3;
0, 22, 147, 340, 390, 246, 83, 12;
0, 51, 630, 2530, 5070, 5928, 4284, 1908, 486, 55;
0, 108, 2295, 14595, 45450, 83559, 98910, 78282, 41580, 14355, 2937, 273;
0, 221, 7476, 70737, 319605, 849450, 1472261, 1757688, 1484451, 891890, 375442, 105930, 18109, 1428;
0, 429, 22302, 301070, 1886010, 6878907, 16386636, 27205308, 32683680, 28981855, 19081854, 9258678, 3231514, 771225, 113220, 7752;
0, 810, 62100, 1157820, 9729720, 46977378, 147584556, 324283068, 520974180, 628884300, 579226362, 409367712, 221218179, 90115620, 26879160, 5559408, 715122, 43263; ...
The rightmost border equals A001764, with g.f. C(x) = 1 + x*C(x)^3.
Column 1 equals A000716, with g.f. P(x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
		

Crossrefs

Cf. A000716 (column 1), A354655 (column 2), A354656 (column 3).
Cf. A354658 (T(n,n)), A354659 (T(n,n+1)), A354660 (T(n,2*n)), A001764 (right border).
Cf. A268299 (y=1), A354652 (y=2), A354653 (y=3), A354654 (y=4).
Cf. A354661 (y=-1), A354662 (y=-2), A354663 (y=-3), A354664 (y=-4).
Cf. A268650 (antidiagonal sums), A354657, A354649.

Programs

  • PARI
    {T(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k)*y^k satisfies:
(1) -y = A(-x,-f(x,y)) = Sum_{n>=0} (-x)^n * Sum_{k=0..2*n+1} (-1)^n * T(n,k) * f(x,y)^k, where f(,) is Ramanujan's theta function.
(2) -y = f(-x,-A(x,y)) = Sum_{n=-oo..oo} (-1)^n * x^(n*(n-1)/2) * A(x,y)^(n*(n+1)/2), where f(,) is Ramanujan's theta function.
(3) -y = Product_{n>=1} (1 - x^n*A(x,y)^n) * (1 - x^(n-1)*A(x,y)^n) * (1 - x^n*A(x,y)^(n-1)), by the Jacobi triple product identity.
(4) -y = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * (1 - x^(2*n+1)) * A(x,y)^(n*(n+1)/2).
(5) -y = Sum_{n>=0} (-1)^n * A(x,y)^(n*(n-1)/2) * (1 - A(x,y)^(2*n+1)) * x^(n*(n+1)/2).
Formulas for terms in rows.
(6) T(n,1) = A000716(n), the number of partitions of n into parts of 3 kinds.
(7) T(n,2*n+1) = A001764(n) = binomial(3*n,n)/(2*n+1), for n >= 0.

A354649 G.f. A(x,y) satisfies: y = f(x,A(x,y)), where f(x,y) = Sum_{n=-oo..oo} x^(n*(n+1)/2) * y^(n*(n-1)/2) is Ramanujan's theta function.

Original entry on oeis.org

-1, 1, 0, -3, 3, -1, 0, 9, -27, 30, -15, 3, 0, -22, 147, -340, 390, -246, 83, -12, 0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55, 0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273, 0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428, 0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Comments

Signed version of A354650.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} sigma(n)*x^n/n ) is the partition function.
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
T(n,1) = (-1)^n * A000716(n), for n >= 0.
T(n,2) = (-1)^(n+1) * A354655(n), for n >= 1.
T(n,3) = (-1)^n * A354656(n), for n >= 1.
T(n,n) = -A354658(n), for n >= 0.
T(n,n+1) = A354659(n), for n >= 0.
T(n,2*n) = (-1)^(n+1) * A354660(n), for n >= 0.
T(n,2*n+1) = (-1)^n * A001764(n), for n >= 0.
Antidiagonal sums equals signed A268650.
Sum_{k=0..2*n+1} T(n,k)*(-1)^k = (-1)^(n+1) * A268299(n+1), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-2)^k = (-1)^(n+1) * A354652(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-3)^k = (-1)^(n+1) * A354653(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*(-4)^k = (-1)^(n+1) * A354654(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k) = (-1)^n * A354661(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*2^k = (-1)^n * A354662(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*3^k = (-1)^n * A354663(n), for n >= 0.
Sum_{k=0..2*n+1} T(n,k)*4^k = (-1)^n * A354664(n), for n >= 0.
SPECIFIC VALUES.
(1) A(x,y) = exp(-Pi) at x = exp(-Pi), y = Pi^(1/4)/gamma(3/4).
(2) A(x,y) = exp(-2*Pi) at x = exp(-2*Pi), y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(3) A(x,y) = exp(-3*Pi) at x = exp(-3*Pi), y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(4) A(x,y) = exp(-4*Pi) at x = exp(-4*Pi), y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(5) A(x,y) = exp(-sqrt(3)*Pi) at x = exp(-sqrt(3)*Pi), y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = (-1 + y) - x*(3*y - 3*y^2 + y^3) + x^2*(9*y - 27*y^2 + 30*y^3 - 15*y^4 + 3*y^5) - x^3*(22*y - 147*y^2 + 340*y^3 - 390*y^4 + 246*y^5 - 83*y^6 + 12*y^7) + x^4*(51*y - 630*y^2 + 2530*y^3 - 5070*y^4 + 5928*y^5 - 4284*y^6 + 1908*y^7 - 486*y^8 + 55*y^9) - x^5*(108*y - 2295*y^2 + 14595*y^3 - 45450*y^4 + 83559*y^5 - 98910*y^6 + 78282*y^7 - 41580*y^8 + 14355*y^9 - 2937*y^10 + 273*y^11) + x^6*(221*y - 7476*y^2 + 70737*y^3 - 319605*y^4 + 849450*y^5 - 1472261*y^6 + 1757688*y^7 - 1484451*y^8 + 891890*y^9 - 375442*y^10 + 105930*y^11 - 18109*y^12 + 1428*y^13) + x^7*(-429*y + 22302*y^2 - 301070*y^3 + 1886010*y^4 - 6878907*y^5 + 16386636*y^6 - 27205308*y^7 + 32683680*y^8 - 28981855*y^9 + 19081854*y^10 - 9258678*y^11 + 3231514*y^12 - 771225*y^13 + 113220*y^14 - 7752*y^15) + x^8*(810*y - 62100*y^2 + 1157820*y^3 - 9729720*y^4 + 46977378*y^5 - 147584556*y^6 + 324283068*y^7 - 520974180*y^8 + 628884300*y^9 - 579226362*y^10 + 409367712*y^11 - 221218179*y^12 + 90115620*y^13 - 26879160*y^14 + 5559408*y^15 - 715122*y^16 + 43263*y^17) + ...
such that A = A(x,y) satisfies:
(1) y = ... + x^36*A^28 + x^28*A^21 + x^21*A^15 + x^15*A^10 + x^10*A^6 + x^6*A^3 + x^3*A + x + 1 + A + x*A^3 + x^3*A^6 + x^6*A^10 + x^10*A^15 + x^15*A^21 + x^21*A^28 + x^28*A^36 + ...
(2) y = (1 - x*A)*(1 + A)*(1+x) * (1 - x^2*A^2)*(1 + x*A^2)*(1 + x^2*A) * (1 - x^3*A^3)*(1 + x^2*A^3)*(1 + x^3*A^2) * (1 - x^4*A^4)*(1 + x^3*A^4)*(1 + x^4*A^3) * (1 - x^5*A^5)*(1 + x^4*A^5)*(1 + x^5*A^4) * ...
(3) y = (1+x) + (1+x^3)*A + x*(1+x^5)*A^3 + x^3*(1+x^7)*A^6 + x^6*(1+x^9)*A^10 + x^10*(1+x^11)*A^15 + x^15*(1+x^13)*A^21 + x^21*(1+x^15)*A^28 + ...
(4) y = (1+A) + (1+A^3)*x + A*(1+A^5)*x^3 + A^3*(1+A^7)*x^6 + A^6*(1+A^9)*x^10 + A^10*(1+A^11)*x^15 + A^15*(1+A^13)*x^21 + A^21*(1+A^15)*x^28 + ...
This triangle of coefficients of x^n*y^k in g.f. A(x,y) for n >= 0, k = 0..2*n+1, begins:
-1, 1;
0, -3, 3, -1;
0, 9, -27, 30, -15, 3;
0, -22, 147, -340, 390, -246, 83, -12;
0, 51, -630, 2530, -5070, 5928, -4284, 1908, -486, 55;
0, -108, 2295, -14595, 45450, -83559, 98910, -78282, 41580, -14355, 2937, -273;
0, 221, -7476, 70737, -319605, 849450, -1472261, 1757688, -1484451, 891890, -375442, 105930, -18109, 1428;
0, -429, 22302, -301070, 1886010, -6878907, 16386636, -27205308, 32683680, -28981855, 19081854, -9258678, 3231514, -771225, 113220, -7752;
0, 810, -62100, 1157820, -9729720, 46977378, -147584556, 324283068, -520974180, 628884300, -579226362, 409367712, -221218179, 90115620, -26879160, 5559408, -715122, 43263; ...
The rightmost border equals signed A001764, with g.f. C(x) = 1 - x*C(x)^3.
Column 1 equals signed A000716, with g.f. P(-x)^3 where P(x) = exp( Sum_{n>=1} x^n/(n*(1-x^n)) ) is the partition function.
		

Crossrefs

Cf. A000716 (column 1), A354655 (column 2), A354656 (column 3).
Cf. A354658 (T(n,n)), A354659 (T(n,n+1)), A354660 (T(n,2*n)), A001764 (right border).
Cf. A268299 (y=-1), A354652 (y=-2), A354653 (y=-3), A354654 (y=-4).
Cf. A354661 (y=1), A354662 (y=2), A354663 (y=3), A354664 (y=4).
Cf. A268650 (antidiagonal sums), A354657, A354650.

Programs

  • PARI
    {T(n,k) = my(A=[y-1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y - sum(m=0,sqrtint(2*#A+9), x^(m*(m-1)/2) * (1 + x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    H=A; polcoeff(A[n+1],k,y)}
    for(n=0,12,for(k=0,2*n+1,print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k)*y^k satisfies:
(1) y = A(x,f(x,y)) = Sum_{n>=0} x^n * Sum_{k=0..2*n+1} T(n,k) * f(x,y)^k, where f(,) is Ramanujan's theta function.
(2) y = f(x,A(x,y)) = Sum_{n=-oo..oo} x^(n*(n-1)/2) * A(x,y)^(n*(n+1)/2), where f(,) is Ramanujan's theta function.
(3) y = Product_{n>=1} (1 - x^n*A(x,y)^n) * (1 + x^(n-1)*A(x,y)^n) * (1 + x^n*A(x,y)^(n-1)), by the Jacobi triple product identity.
(4) y = Sum_{n>=0} x^(n*(n-1)/2) * (1 + x^(2*n+1)) * A(x,y)^(n*(n+1)/2).
(5) y = Sum_{n>=0} A(x,y)^(n*(n-1)/2) * (1 + A(x,y)^(2*n+1)) * x^(n*(n+1)/2).
(6) T(n,1) = (-1)^n * A000716(n), where A000716(n) is the number of partitions of n into parts of 3 kinds.
(7) T(n,2*n+1) = (-1)^n * A001764(n) = (-1)^n * binomial(3*n,n)/(2*n+1), for n >= 0.

A356500 Coefficients T(n,k) of x^n*y^k in A(x,y) for n >= 0, k = 0..3*n+1, where A(x,y) satisfies: y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n-1)^2), as an irregular triangle read by rows.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 28, 0, 0, 0, 22, 0, 3, 0, 0, 0, 84, 0, 0, 0, 219, 0, 0, 0, 140, 0, 0, 0, 0, 135, 0, 0, 0, 981, 0, 0, 0, 1807, 0, 0, 0, 969, 0, 0, 0, 120, 0, 0, 0, 2568, 0, 0, 0, 10764, 0, 0, 0, 15368, 0, 0, 0, 7084, 0, 0, 54, 0, 0, 0, 4284, 0, 0, 0, 38896, 0, 0, 0, 114240, 0, 0, 0, 133266, 0, 0, 0, 53820, 0, 9, 0, 0, 0, 4662, 0, 0, 0, 94390, 0, 0, 0, 525980, 0, 0, 0, 1187433, 0, 0, 0, 1171390, 0, 0, 0, 420732
Offset: 0

Views

Author

Paul D. Hanna, Aug 09 2022

Keywords

Comments

T(n, 3*n+1) = [x^n*y^(3*n+1)] A(x,y) = binomial(4*n, n)/(3*n + 1) = A002293(n) for n >= 0, where g.f. G(x) of A002293 satisfies: G(x) = 1 + x*G(x)^4.
T(4*n, 1) = A000716(n) for n >= 0 (nonzero terms in column 1).
T(4*n+3, 2) = [x^(4*n+3)*y^2] A(x,y) = 2 * A354655(n+1) for n >= 0, where A354655 equals column 2 of triangle A354650.
T(4*n+2, 3) = [x^(4*n+2)*y^3] A(x,y) = 4 * A354656(n+1) for n >= 0, where A354656 equals column 3 of triangle A354650.
T(2*n, 2*n+1) = A356504(n), for n >= 0.
T(2*n+1, 2*n) = A356505(n) for n >= 0.
T(3*n, n+1) = A356506(n) for n >= 0.
T(3*n+1, n) = A355365(n) where A355365 is the central terms of A355360 = A355360(2*n,n).
Sum_{k=0..3*n+1} T(n, k) = A354248(n) for n >= 0 (row sums).
Sum_{k=0..3*n+1} T(n, k) * 2^k = A356502(n) for n >= 0.
Sum_{k=0..3*n+1} T(n, k) * 3^k = A356503(n) for n >= 0.
Sum_{k=0..3*n+1} T(4*n+1-k, k) = A355872(n+1) for n >= 0 (nonzero antidiagonal sums).
SPECIFIC VALUES.
(V.1) 1 = A(x,y) at x = -exp(-Pi) and y = Pi^(1/4)/gamma(3/4).
(V.2) 1 = A(x,y) at x = -exp(-2*Pi) and y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(V.3) 1 = A(x,y) at x = -exp(-3*Pi) and y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(V.4) 1 = A(x,y) at x = -exp(-4*Pi) and y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(V.5) 1 = A(x,y) at x = -exp(-sqrt(3)*Pi) and y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = y + x*(1 + y^4) + x^2*(4*y^3 + 4*y^7) + x^3*(6*y^2 + 28*y^6 + 22*y^10) + x^4*(3*y + 84*y^5 + 219*y^9 + 140*y^13) + x^5*(135*y^4 + 981*y^8 + 1807*y^12 + 969*y^16) + x^6*(120*y^3 + 2568*y^7 + 10764*y^11 + 15368*y^15 + 7084*y^19) + x^7*(54*y^2 + 4284*y^6 + 38896*y^10 + 114240*y^14 + 133266*y^18 + 53820*y^22) + x^8*(9*y + 4662*y^5 + 94390*y^9 + 525980*y^13 + 1187433*y^17 + 1171390*y^21 + 420732*y^25) + x^9*(3250*y^4 + 160965*y^8 + 1670942*y^12 + 6640711*y^16 + 12167001*y^20 + 10399545*y^24 + 3362260*y^28) + ...
such that A = A(x,y) satisfies
y = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
This irregular triangle of coefficients T(n,k) of x^n*y^k in A(x,y) for n >= 0, k = 0..3*n+1, begins:
  n = 0: [0, 1];
  n = 1: [1, 0, 0, 0, 1];
  n = 2: [0, 0, 0, 4, 0, 0, 0, 4];
  n = 3: [0, 0, 6, 0, 0, 0, 28, 0, 0, 0, 22];
  n = 4: [0, 3, 0, 0, 0, 84, 0, 0, 0, 219, 0, 0, 0, 140];
  n = 5: [0, 0, 0, 0, 135, 0, 0, 0, 981, 0, 0, 0, 1807, 0, 0, 0, 969];
  n = 6: [0, 0, 0, 120, 0, 0, 0, 2568, 0, 0, 0, 10764, 0, 0, 0, 15368, 0, 0, 0, 7084];
  n = 7: [0, 0, 54, 0, 0, 0, 4284, 0, 0, 0, 38896, 0, 0, 0, 114240, 0, 0, 0, 133266, 0, 0, 0, 53820];
  n = 8: [0, 9, 0, 0, 0, 4662, 0, 0, 0, 94390, 0, 0, 0, 525980, 0, 0, 0, 1187433, 0, 0, 0, 1171390, 0, 0, 0, 420732];
  n = 9: [0, 0, 0, 0, 3250, 0, 0, 0, 160965, 0, 0, 0, 1670942, 0, 0, 0, 6640711, 0, 0, 0, 12167001, 0, 0, 0, 10399545, 0, 0, 0, 3362260];
  ...
Reading this triangle by nonzero antidiagonals [x^(4*n+1-k)*y^k] A(x,y) for n >= 0, k = 0..3*n+1, yields triangle A356501:
  [1, 1];
  [0, 3, 6, 4, 1];
  [0, 9, 54, 120, 135, 84, 28, 4];
  [0, 22, 294, 1360, 3250, 4662, 4284, 2568, 981, 219, 22];
  [0, 51, 1260, 10120, 41405, 103020, 170324, 196172, 160965, 94390, 38896, 10764, 1807, 140];
  [0, 108, 4590, 58380, 368145, 1404102, 3587696, 6515712, 8715465, 8763645, 6684744, 3863496, 1670942, 525980, 114240, 15368, 969];
  ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(A=[y],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
    A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[n+1],k,y) }
    for(n=0,9, for(k=0,3*n+1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..3*n+1} T(n,k) * x^n * y^k satisfies:
(1) y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n+1)^2).
(2) y = A(x,y) * Product_{n>=1} (1 - x^(2*n)*A(x,y)^(2*n)) * (1 - x^(2*n-1)*A(x,y)^(2*n+1)) * (1 - x^(2*n-1)*A(x,y)^(2*n-3)), by the Jacobi triple product identity.
(3) y = (-x) * Product_{n>=1} (1 - x^(2*n)*A(x,y)^(2*n)) * (1 - x^(2*n+1)*A(x,y)^(2*n-1)) * (1 - x^(2*n-3)*A(x,y)^(2*n-1)), by the Jacobi triple product identity.
(4) y = A(x, F(x,y)) where F(x,y) = Sum_{n=-oo..+oo} (-x)^(n^2) * y^((n-1)^2).
(5) 1 = A(x, theta_4(x)) where theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2) is a Jacobi theta function.

A354655 Column 2 of triangle A354650: a(n) = A354650(n,2), for n >= 1.

Original entry on oeis.org

3, 27, 147, 630, 2295, 7476, 22302, 62100, 163260, 409080, 983367, 2280306, 5122026, 11184075, 23806575, 49521456, 100872135, 201558231, 395675475, 764130780, 1453424259, 2725614243, 5044092372, 9219499800, 16655554125, 29759775435, 52623867051
Offset: 1

Views

Author

Paul D. Hanna, Jun 02 2022

Keywords

Crossrefs

Programs

  • PARI
    {A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
    polcoeff(A[n+1],k,y)}
    for(n=1,30,print1(A354650(n,2),", "))

Formula

a(n) = (-1)^(n+1) * A354649(n,2), for n >= 1.
a(n) = A354650(n,2), for n >= 1.
Showing 1-4 of 4 results.