A356504
a(n) = A356500(2*n, 2*n+1) for n >= 0.
Original entry on oeis.org
1, 4, 84, 2568, 94390, 3863496, 169713208, 7836945872, 375608185758, 18527792412380, 935129979113044, 48088668037229040, 2511680568602631894, 132918633258508425944, 7113508747197660153120, 384416086900675623039520, 20951080869890118976964642
Offset: 0
-
{A356500(n,k) = my(A=[y],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[n+1],k,y) }
for(n=0,20, print1( A356500(2*n, 2*n+1),", "))
A356505
a(n) = A356500(2*n+1, 2*n) for n >= 0.
Original entry on oeis.org
1, 6, 135, 4284, 160965, 6684744, 296679006, 13805453160, 665611197093, 32988925715610, 1671463040525586, 86231285273788180, 4516133521439246825, 239551205985729110664, 12846081444122599438850, 695428535332816056597520, 37960416340437631597631877
Offset: 0
-
{A356500(n,k) = my(A=[y],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[n+1],k,y) }
for(n=0,20, print1( A356500(2*n+1, 2*n),", "))
A356506
a(n) = A356500(3*n, n+1) for n >= 0.
Original entry on oeis.org
1, 6, 120, 3250, 103020, 3587696, 133101836, 5167564380, 207615129579, 8567305854998, 361201849117032, 15498967122249676, 674906101555736960, 29757755664623031984, 1326196334421645347368, 59655785739373960058296, 2705420198806474232850741
Offset: 0
-
{A356500(n,k) = my(A=[y],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[n+1],k,y) }
for(n=0,20, print1( A356500(3*n, n+1),", "))
A361050
Expansion of g.f. A(x,y) satisfying y/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x,y)^(3*n) - 1/A(x,y)^(3*n+1)), as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 5, 4, 0, 18, 40, 22, 0, 55, 244, 335, 140, 0, 149, 1160, 2924, 2875, 969, 0, 371, 4688, 19090, 32745, 25081, 7084, 0, 867, 16848, 103110, 272250, 352814, 221397, 53820, 0, 1923, 55332, 485356, 1839075, 3565548, 3709244, 1971775, 420732, 0, 4086, 169048, 2054520, 10674985, 28909300, 44146487, 38344384, 17682895, 3362260
Offset: 1
G.f.: A(x,y) = x + y*x^2 + (5*y + 4*y^2)*x^3 + (18*y + 40*y^2 + 22*y^3)*x^4 + (55*y + 244*y^2 + 335*y^3 + 140*y^4)*x^5 + (149*y + 1160*y^2 + 2924*y^3 + 2875*y^4 + 969*y^5)*x^6 + (371*y + 4688*y^2 + 19090*y^3 + 32745*y^4 + 25081*y^5 + 7084*y^6)*x^7 + (867*y + 16848*y^2 + 103110*y^3 + 272250*y^4 + 352814*y^5 + 221397*y^6 + 53820*y^7)*x^8 + (1923*y + 55332*y^2 + 485356*y^3 + 1839075*y^4 + 3565548*y^5 + 3709244*y^6 + 1971775*y^7 + 420732*y^8)*x^9 + (4086*y + 169048*y^2 + 2054520*y^3 + 10674985*y^4 + 28909300*y^5 + 44146487*y^6 + 38344384*y^7 + 17682895*y^8 + 3362260*y^9)*x^10 + ...
This triangle of coefficients T(n,k) of x^n*y^k, n >= 1, k = 0..n-1, in g.f. A(x,y) begins:
1;
0, 1;
0, 5, 4;
0, 18, 40, 22;
0, 55, 244, 335, 140;
0, 149, 1160, 2924, 2875, 969;
0, 371, 4688, 19090, 32745, 25081, 7084;
0, 867, 16848, 103110, 272250, 352814, 221397, 53820;
0, 1923, 55332, 485356, 1839075, 3565548, 3709244, 1971775, 420732;
0, 4086, 169048, 2054520, 10674985, 28909300, 44146487, 38344384, 17682895, 3362260;
0, 8374, 486500, 7984667, 55085875, 199363606, 417661860, 525322468, 391561335, 159463876, 27343888;
0, 16634, 1331056, 28909580, 258486830, 1211896230, 3335033317, 5680806120, 6069336891, 3961602925, 1444601027, 225568798;
...
-
{T(n,k) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(y/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) );
polcoeff(polcoeff(H=Ser(A),n,x),k,y)}
for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "));print(""))
A356502
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
Original entry on oeis.org
2, 17, 544, 24344, 1261702, 71159152, 4240009152, 262584135640, 16734002688722, 1090225325371424, 72285357987696768, 4861658409827006872, 330874470176939132844, 22744684876060771599568, 1576898258893213475814464, 110136698483814852518084528, 7742091796859524187452564262
Offset: 0
G.f.: A(x) = 2 + 17*x + 544*x^2 + 24344*x^3 + 1261702*x^4 + 71159152*x^5 + 4240009152*x^6 + 262584135640*x^7 + 16734002688722*x^8 + ...
such that A = A(x) satisfies
2 = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{k == r^4*s^2 * QPochhammer[1/(r^3*s), r^2*s^2] * QPochhammer[r/s, r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]/((r - s)*(-1 + r^3*s)), 1/r^3*(k*(1 + r^4 - 2*r/s) + 2*r^6*s^3*QPochhammer[r/s, r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]* Derivative[0, 1][QPochhammer][1/(r^3*s), r^2*s^2] + 2*k*r^2*(r - s)*s*(-1 + r^3*s) * Derivative[0, 1][QPochhammer][r/s, r^2*s^2]/ QPochhammer[r/s, r^2*s^2] + 1/s*k*(r - s)*(-1 + r^3*s) * (1/ Log[r^2*s^2]*(-2*QPolyGamma[0, 1, r^2*s^2] + QPolyGamma[0, Log[1/(r^3*s)] / Log[r^2*s^2], r^2*s^2] + QPolyGamma[0, Log[r/s] / Log[r^2*s^2], r^2*s^2]) + 2*r^2*s^2 * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / QPochhammer[r^2*s^2, r^2*s^2])) == 0} /. k -> 2, {r, 1/75}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
-
{a(n) = my(A=[2],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); H=A; A[n+1]}
for(n=0,20,print1(a(n),", "))
A356503
G.f. A(x) satisfies: 3 = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
Original entry on oeis.org
3, 82, 8856, 1319544, 227536218, 42679033812, 8455886664768, 1741107313315440, 368888770098828828, 79897573332771325074, 17610753240158104125072, 3937441977622780631428392, 890818276864624495645873656, 203562312272030478854160019188, 46914726894168080421554447339136
Offset: 0
G.f.: A(x) = 3 + 82*x + 8856*x^2 + 1319544*x^3 + 227536218*x^4 + 42679033812*x^5 + 8455886664768*x^6 + 1741107313315440*x^7 + 368888770098828828*x^8 + ...
such that A = A(x) satisfies
3 = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
-
(* Calculation of constant d: *) 1/r /. FindRoot[{k == r^4*s^2 * QPochhammer[1/(r^3*s), r^2*s^2] * QPochhammer[r/s, r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]/((r - s)*(-1 + r^3*s)), 1/r^3*(k*(1 + r^4 - 2*r/s) + 2*r^6*s^3*QPochhammer[r/s, r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]* Derivative[0, 1][QPochhammer][1/(r^3*s), r^2*s^2] + 2*k*r^2*(r - s)*s*(-1 + r^3*s) * Derivative[0, 1][QPochhammer][r/s, r^2*s^2]/ QPochhammer[r/s, r^2*s^2] + 1/s*k*(r - s)*(-1 + r^3*s) * (1/ Log[r^2*s^2]*(-2*QPolyGamma[0, 1, r^2*s^2] + QPolyGamma[0, Log[1/(r^3*s)] / Log[r^2*s^2], r^2*s^2] + QPolyGamma[0, Log[r/s] / Log[r^2*s^2], r^2*s^2]) + 2*r^2*s^2 * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / QPochhammer[r^2*s^2, r^2*s^2])) == 0} /. k -> 3, {r, 1/250}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
-
{a(n) = my(A=[3],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); H=A; A[n+1]}
for(n=0,20,print1(a(n),", "))
A355872
G.f. A(x) satisfies: x = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x)^((n-1)^2).
Original entry on oeis.org
2, 14, 434, 17662, 829314, 42293582, 2276970482, 127359871870, 7328894334338, 431089922960910, 25803242957983410, 1566580082112919422, 96239944539571023362, 5971465584401568096846, 373681955307631772312050, 23556948108319423559281918, 1494606013410312933197468930
Offset: 1
G.f. A(x) = 2*x + 14*x^5 + 434*x^9 + 17662*x^13 + 829314*x^17 + 42293582*x^21 + 2276970482*x^25 + 127359871870*x^29 + 7328894334338*x^33 + 431089922960910*x^37 + ...
such that A = A(x) satisfies
x = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
-
(* Calculation of constant d: *) 1/r^4 /. FindRoot[{r*s^4*QPochhammer[1/(r*s^3), r^2*s^2] * QPochhammer[s/r, r^2*s^2]*QPochhammer[r^2*s^2, r^2*s^2] == (r - s)*(-1 + r*s^3), 1/s^3*(3*s + r*(-4 + r*s^3) + 2*r^2*(r - s)*s^2*(-1 + r*s^3)* Derivative[0, 1][QPochhammer][1/(r*s^3), r^2*s^2] / QPochhammer[1/(r*s^3), r^2*s^2] + 2*r^3*s^6*QPochhammer[1/(r*s^3), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2] * Derivative[0, 1][QPochhammer][s/r, r^2*s^2] + (r - s)*(-1 + r*s^3)* (-(2*QPolyGamma[0, 1, r^2*s^2] - 3*QPolyGamma[0, Log[1/(r*s^3)]/Log[r^2*s^2], r^2*s^2] + QPolyGamma[0, Log[s/r]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2] + 2*r^2*s^2 * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / QPochhammer[r^2*s^2, r^2*s^2])) == 0}, {r, 1/60}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
-
{a(n) = my(A=[0,2]); for(i=1,n, A=concat(A,[0,0,0,0]);
A[#A] = -polcoeff( sum(m=-#A,#A,(-x)^(m^2) * Ser(A)^((m-1)^2) ), #A-1)); A[4*n-2]}
for(n=1,20,print1(a(n),", "))
A356501
Coefficients T(n,k) of x^(4*n+1-k)*y^k in A(x,y) for n >= 0, k = 0..3*n+1, where A(x,y) satisfies: y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n-1)^2), as an irregular triangle read by rows.
Original entry on oeis.org
1, 1, 0, 3, 6, 4, 1, 0, 9, 54, 120, 135, 84, 28, 4, 0, 22, 294, 1360, 3250, 4662, 4284, 2568, 981, 219, 22, 0, 51, 1260, 10120, 41405, 103020, 170324, 196172, 160965, 94390, 38896, 10764, 1807, 140, 0, 108, 4590, 58380, 368145, 1404102, 3587696, 6515712, 8715465, 8763645, 6684744, 3863496, 1670942, 525980, 114240, 15368, 969
Offset: 0
G.f.: A(x,y) = y + x*(1 + y^4) + x^2*(4*y^3 + 4*y^7) + x^3*(6*y^2 + 28*y^6 + 22*y^10) + x^4*(3*y + 84*y^5 + 219*y^9 + 140*y^13) + x^5*(135*y^4 + 981*y^8 + 1807*y^12 + 969*y^16) + x^6*(120*y^3 + 2568*y^7 + 10764*y^11 + 15368*y^15 + 7084*y^19) + x^7*(54*y^2 + 4284*y^6 + 38896*y^10 + 114240*y^14 + 133266*y^18 + 53820*y^22) + x^8*(9*y + 4662*y^5 + 94390*y^9 + 525980*y^13 + 1187433*y^17 + 1171390*y^21 + 420732*y^25) + x^9*(3250*y^4 + 160965*y^8 + 1670942*y^12 + 6640711*y^16 + 12167001*y^20 + 10399545*y^24 + 3362260*y^28) + ...
such that A = A(x,y) satisfies
y = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
This triangle of coefficients of x^(4*n+1-k)*y^k in A(x,y) for n >= 0, k = 0..3*n+1, begins:
n = 0: [1, 1];
n = 1: [0, 3, 6, 4, 1];
n = 2: [0, 9, 54, 120, 135, 84, 28, 4];
n = 3: [0, 22, 294, 1360, 3250, 4662, 4284, 2568, 981, 219, 22];
n = 4: [0, 51, 1260, 10120, 41405, 103020, 170324, 196172, 160965, 94390, 38896, 10764, 1807, 140];
n = 5: [0, 108, 4590, 58380, 368145, 1404102, 3587696, 6515712, 8715465, 8763645, 6684744, 3863496, 1670942, 525980, 114240, 15368, 969];
n = 6: [0, 221, 14952, 282948, 2578147, 14039250, 51126740, 133101836, 258436719, 384735141, 446971668, 409367712, 296679006, 169713208, 75904032, 26050408, 6640711, 1187433, 133266, 7084];
...
-
{T(n,k) = my(A=[y],M); for(i=1,4*n+1, A = concat(A,0); M = ceil(sqrt(4*n+1));
A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[4*n+2-k],k,y)}
for(n=0,7, for(k=0,3*n+1, print1(T(n,k),", "));print(""))
Showing 1-8 of 8 results.
Comments