Original entry on oeis.org
1, 5, 244, 19090, 1839075, 199363606, 23320604384, 2876887986028, 369107300988219, 48807370374419910, 6610055144592717246, 912769451975745598299, 128087096344387852459658, 18219369599509083643661044, 2621701165622760015979876800, 381039123615762485580377457688
Offset: 1
-
{A361050(n,k) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(y/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) );
polcoeff(polcoeff(H=Ser(A),n,x),k,y)}
for(n=1, 16, print1(A361050(2*n-1,n-1), ", "))
A359921
a(n) = coefficient of x^n in A(x) such that 1/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 1, 9, 80, 774, 8077, 89059, 1021106, 12048985, 145347965, 1784282449, 22217589408, 279934808090, 3562376922346, 45721210139842, 591139659619262, 7692224199601436, 100663182977093130, 1323944771879772911, 17491108974090887920, 232015023433972687373, 3088855705228007528177
Offset: 1
G.f.: A(x) = x + x^2 + 9*x^3 + 80*x^4 + 774*x^5 + 8077*x^6 + 89059*x^7 + 1021106*x^8 + 12048985*x^9 + 145347965*x^10 + ...
where A = A(x) satisfies the doubly infinite sum
1/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
1/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(1/x - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-4) ); A[n+1]}
for(n=1,30, print1(a(n),", "))
-
/* Using the quintuple product */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(1/x - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-4) ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A359924
a(n) = coefficient of x^n in A(x) such that 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 2, 26, 372, 6006, 105338, 1952102, 37598422, 745116966, 15094772444, 311183832004, 6507065710068, 137683172641240, 2942394474649322, 63418690179207242, 1376986195691108990, 30090726682472126472, 661292884776232386766, 14606177871231796042658, 324062328994910188622258
Offset: 1
G.f.: A(x) = x + 2*x^2 + 26*x^3 + 372*x^4 + 6006*x^5 + 105338*x^6 + 1952102*x^7 + 37598422*x^8 + 745116966*x^9 + 15094772444*x^10 + ...
where A = A(x) satisfies the doubly infinite sum
2/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
2/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(2/x - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-4) ); A[n+1]}
for(n=1,30, print1(a(n),", "))
-
/* Using the quintuple product */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(2/x - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-4) ); A[n+1]}
for(n=1,30, print1(a(n),", "))
A361550
Expansion of g.f. A(x,y) satisfying x*y = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x,y)^(3*n) - 1/A(x,y)^(3*n+1)), as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 5, 1, 0, 18, 10, 1, 0, 55, 61, 20, 1, 0, 149, 290, 215, 35, 1, 0, 371, 1172, 1660, 555, 56, 1, 0, 867, 4212, 10311, 5850, 1254, 84, 1, 0, 1923, 13833, 54688, 47460, 17773, 2555, 120, 1, 0, 4086, 42262, 256815, 319409, 188300, 46844, 4810, 165, 1, 0, 8374, 121625, 1093790, 1864445, 1621116, 621915, 111348, 8505, 220, 1, 0, 16634, 332764, 4297370, 9717550, 11913160, 6557572, 1818022, 243795, 14290, 286, 1
Offset: 0
G.f.: A(x,y) = 1 + y*x + (5*y + y^2)*x^2 + (18*y + 10*y^2 + y^3)*x^3 + (55*y + 61*y^2 + 20*y^3 + y^4)*x^4 + (149*y + 290*y^2 + 215*y^3 + 35*y^4 + y^5)*x^5 + (371*y + 1172*y^2 + 1660*y^3 + 555*y^4 + 56*y^5 + y^6)*x^6 + (867*y + 4212*y^2 + 10311*y^3 + 5850*y^4 + 1254*y^5 + 84*y^6 + y^7)*x^7 + (1923*y + 13833*y^2 + 54688*y^3 + 47460*y^4 + 17773*y^5 + 2555*y^6 + 120*y^7 + y^8)*x^8 + (4086*y + 42262*y^2 + 256815*y^3 + 319409*y^4 + 188300*y^5 + 46844*y^6 + 4810*y^7 + 165*y^8 + y^9)*x^9 + (8374*y + 121625*y^2 + 1093790*y^3 + 1864445*y^4 + 1621116*y^5 + 621915*y^6 + 111348*y^7 + 8505*y^8 + 220*y^9 + y^10)*x^10 + ...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
0, 1;
0, 5, 1;
0, 18, 10, 1;
0, 55, 61, 20, 1;
0, 149, 290, 215, 35, 1;
0, 371, 1172, 1660, 555, 56, 1;
0, 867, 4212, 10311, 5850, 1254, 84, 1;
0, 1923, 13833, 54688, 47460, 17773, 2555, 120, 1;
0, 4086, 42262, 256815, 319409, 188300, 46844, 4810, 165, 1;
0, 8374, 121625, 1093790, 1864445, 1621116, 621915, 111348, 8505, 220, 1;
0, 16634, 332764, 4297370, 9717550, 11913160, 6557572, 1818022, 243795, 14290, 286, 1;
0, 32152, 871641, 15771148, 46148620, 77162284, 58002140, 23152872, 4811721, 499180, 23012, 364, 1;
...
-
{T(n,k) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(x*y - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) );
polcoeff(polcoeff(Ser(A),n,x),k,y)}
for(n=0, 12, for(k=0,n, print1(T(n,k), ", "));print(""))
A361052
Expansion of g.f. A(x) satisfying 4/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 4, 84, 2120, 61404, 1934548, 64379980, 2226478604, 79225597516, 2881791020120, 106672402111192, 4005192227754984, 152168779157569376, 5839221480075313396, 225986788425426186532, 8810672964167893735292, 345722424894740010814784, 13642862904817471637398044
Offset: 1
G.f.: A(x) = x + 4*x^2 + 84*x^3 + 2120*x^4 + 61404*x^5 + 1934548*x^6 + 64379980*x^7 + 2226478604*x^8 + 79225597516*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
4/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
4/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4/x - sum(m=-#A, #A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A360191
G.f. 1 / Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2.
Original entry on oeis.org
1, 5, 18, 55, 149, 371, 867, 1923, 4086, 8374, 16634, 32152, 60669, 112041, 202943, 361200, 632647, 1091917, 1859225, 3126242, 5195715, 8541624, 13899866, 22404091, 35787815, 56683294, 89061028, 138872410, 214984454, 330532633, 504869316, 766357010, 1156355165
Offset: 0
G.f.: A(x) = 1 + 5*x + 18*x^2 + 55*x^3 + 149*x^4 + 371*x^5 + 867*x^6 + 1923*x^7 + 4086*x^8 + 8374*x^9 + 16634*x^10 + 32152*x^11 + 60669*x^12 + ...
-
nmax = 30; CoefficientList[Series[1/Product[(1 - x^k)^3 * (1 - x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
nmax = 30; CoefficientList[Series[1/(QPochhammer[x] * EllipticTheta[4, 0, x]^2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
-
{a(n) = polcoeff( 1/prod(m=1,n, (1 - x^m)^3 * (1 - x^(2*m-1))^2 +x*O(x^n)), n)}
for(n=0,32,print1(a(n),", "))
A361535
Expansion of g.f. 1 / Product_{n>=1} ((1 - x^n)^6 * (1 - x^(2*n-1))^4).
Original entry on oeis.org
1, 10, 61, 290, 1172, 4212, 13833, 42262, 121625, 332764, 871641, 2197936, 5359005, 12679730, 29200593, 65617892, 144189054, 310400110, 655669910, 1360910666, 2779007594, 5589070978, 11081585154, 21679798590, 41883282555, 79958881544, 150943109191, 281926365224
Offset: 0
G.f.: A(x) = 1 + 10*x + 61*x^2 + 290*x^3 + 1172*x^4 + 4212*x^5 + 13833*x^6 + 42262*x^7 + 121625*x^8 + 332764*x^9 + 871641*x^10 + ...
A related series begins
A(x)^(1/2) = 1 + 5*x + 18*x^2 + 55*x^3 + 149*x^4 + 371*x^5 + 867*x^6 + 1923*x^7 + 4086*x^8 + 8374*x^9 + ... + A360191(n)*x^n + ...
-
nmax = 30; CoefficientList[Series[Product[1/((1 - x^k)^6 * (1 - x^(2*k-1))^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 19 2023 *)
-
{a(n) = polcoeff( 1/prod(m=1,n, (1 - x^m)^6 * (1 - x^(2*m-1))^4 + x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
A361051
Expansion of g.f. A(x) satisfying 3/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 3, 51, 1008, 22746, 558177, 14469999, 389827008, 10805735061, 306185433921, 8828873667975, 258229614694974, 7642514652514140, 228450735379271754, 6887262023421308658, 209169231039167908596, 6393531094406983438776, 196536271435928605186752, 6071932630099467279020415
Offset: 1
G.f.: A(x) = x + 3*x^2 + 51*x^3 + 1008*x^4 + 22746*x^5 + 558177*x^6 + 14469999*x^7 + 389827008*x^8 + 10805735061*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
3/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
3/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3/x - sum(m=-#A, #A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments