A283271
Expansion of exp( Sum_{n>=1} -sigma_5(n)*x^n/n ) in powers of x.
Original entry on oeis.org
1, -1, -16, -65, -55, 807, 4809, 13135, 550, -169070, -862710, -2281174, -1221309, 20194565, 114391575, 346400092, 486546751, -1239516671, -11089537215, -41702958960, -93143227027, -45337210750, 674845109986, 3682196642725, 11405949184465, 20796945542222
Offset: 0
Cf.
A023873 (exp( Sum_{n>=1} sigma_5(n)*x^n/n )).
A023873
Expansion of Product_{k>=1} (1 - x^k)^(-k^4).
Original entry on oeis.org
1, 1, 17, 98, 490, 2411, 11940, 56093, 256274, 1140980, 4977222, 21273772, 89281011, 368408970, 1496993290, 5996312751, 23700208290, 92510062036, 356887002352, 1361671469470, 5141380256124, 19221678032134, 71190778935805, 261320839754142, 951091521384860
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..3339 (first 801 terms from Alois P. Heinz)
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^4: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^4, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2012
-
max = 27; Series[ Product[1/(1 - x^k)^k^4, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
-
m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^4)) \\ G. C. Greubel, Oct 30 2018
A380290
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.
Original entry on oeis.org
1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3)
a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3)
a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
-
with(numtheory):
G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
(* or *)
Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
A380582
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^k)/(1 - x^k))^(k^2) is the g.f. of A206622.
Original entry on oeis.org
1, 2, 24, 236, 2432, 25752, 277152, 3019088, 33186816, 367378814, 4089875024, 45741207228, 513537853952, 5784253405192, 65332622356032, 739706089046736, 8392732289277952, 95401363286044260, 1086232605119042424, 12386037358495697292, 141422619808922418432, 1616691574828234720352
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 3019088 - 2 = 2*(3^3)*(7^3)*163 == 0 (mod 7^3)
a(13) - a(1) = 5784253405192 - 2 = 2*5*(13^4)*20252279 == 0 (mod 13^4)
a(2*11) - a(2) = 18501616629347623668448 - 24 = (2^3)*(11^3)*17*1951*4243*9817*1257719 == 0 (mod 11^3)
a(5^2) - a(5) = 1884578634304981694792832319004 - 256504 = (2^2)*(5^6)*193381* 155926684363405438573 == 0 (mod 5^6)
-
with(numtheory):
G(x) := series(exp(add( (1/4)*(sigma[3](2*k) - sigma[3](k))*x^k/k, k = 1..23 )),x,24):
seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
A380583
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^(2*k))/(1 - x^k))^(k^2).
Original entry on oeis.org
1, 1, 13, 82, 665, 5026, 40180, 319677, 2583401, 20965150, 171276238, 1405008925, 11571476120, 95601033542, 792038546739, 6577523807332, 54737967873385, 456368114019558, 3811136362823056, 31873576059000827, 266919720010452190, 2237944814420991135, 18784073017650350445
Offset: 0
Examples of supercongruences:
a(7) - a(1) = 319677 - 1 = (2^2)*(7^3)*233 == 0 (mod 7^3)
a(11) - a(1) = 1405008925 - 1 = (2^2)*3*(11^5)*727 == 0 (mod 11^5)
a(22) - a(2) = 18784073017650350445 - 13 = (2^5)*(11^3)*222773*1979699077 == 0 (mod 11^3)
-
G(x) := series(mul( ( (1 + x^(2*k))/(1 - x^k) )^(k^2), k = 1..22), x, 23):
a:= n-> coeftayl(G(x)^n, x = 0, n):
seq(a(n), n = 0..22);
Showing 1-5 of 5 results.
Comments