A121860 a(n) = Sum_{d|n} n!/(d!*(n/d)!).
1, 2, 2, 8, 2, 122, 2, 1682, 10082, 30242, 2, 7318082, 2, 17297282, 3632428802, 36843206402, 2, 2981705126402, 2, 1690185726028802, 3379030566912002, 28158588057602, 2, 76941821303636889602, 1077167364120207360002
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..467
- Jimmy Devillet, Gergely Kiss, Characterizations of biselective operations, arXiv:1806.02073 [math.RA], 2018.
Programs
-
Maple
with(numtheory): seq(n!*add(1/(d!*(n/d)!), d in divisors(n)), n = 1..25); # Peter Bala, Aug 04 2025
-
Mathematica
f[n_] := Block[{d = Divisors@n}, Plus @@ (n!/(d! (n/d)!))]; Array[f, 25] (* Robert G. Wilson v, Sep 11 2006 *) Table[DivisorSum[n, n!/(#!*(n/#)!) &], {n, 25}] (* Michael De Vlieger, Sep 12 2018 *)
-
PARI
a(n) = sumdiv(n, d, n!/(d!*(n/d)!)); \\ Michel Marcus, Sep 13 2018
Formula
E.g.f.: Sum_{k>0} (exp(x^k)-1)/k!.
Extensions
More terms from Robert G. Wilson v, Sep 11 2006
Comments