cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A121860 a(n) = Sum_{d|n} n!/(d!*(n/d)!).

Original entry on oeis.org

1, 2, 2, 8, 2, 122, 2, 1682, 10082, 30242, 2, 7318082, 2, 17297282, 3632428802, 36843206402, 2, 2981705126402, 2, 1690185726028802, 3379030566912002, 28158588057602, 2, 76941821303636889602, 1077167364120207360002
Offset: 1

Views

Author

Vladeta Jovovic, Sep 09 2006

Keywords

Comments

a(n) = 2 iff n is prime.
a(468) has 1007 decimal digits. - Michael De Vlieger, Sep 12 2018
From Gus Wiseman, Jan 10 2019: (Start)
Number of matrices whose entries are 1,...,n, up to row and column permutations. For example, inequivalent representatives of the a(4) = 8 matrices are:
[1 2 3 4]
.
[1 2] [1 2] [1 3] [1 3] [1 4] [1 4]
[3 4] [4 3] [2 4] [4 2] [2 3] [3 2]
.
[1]
[2]
[3]
[4]
(End)
Conjecture: the sequence a(n) taken modulo a positive integer k >= 3 eventually becomes constant equal to 2. For example, the sequence taken modulo 11 is [1, 2, 2, 8, 2, 1, 2, 10, 6, 3, 2, 2, 2, 2, 2, 2, ...]. - Peter Bala, Aug 08 2025

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n!*add(1/(d!*(n/d)!), d in divisors(n)), n = 1..25); # Peter Bala, Aug 04 2025
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (n!/(d! (n/d)!))]; Array[f, 25] (* Robert G. Wilson v, Sep 11 2006 *)
    Table[DivisorSum[n, n!/(#!*(n/#)!) &], {n, 25}] (* Michael De Vlieger, Sep 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, n!/(d!*(n/d)!)); \\ Michel Marcus, Sep 13 2018

Formula

E.g.f.: Sum_{k>0} (exp(x^k)-1)/k!.

Extensions

More terms from Robert G. Wilson v, Sep 11 2006
Showing 1-1 of 1 results.