cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074378 Even triangular numbers halved.

Original entry on oeis.org

0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008
Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010
Integers of the form Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Feb 07 2012
Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5)) = 1 + q^3 + q^5 + q^14 + q^18 + .... - Peter Bala, Dec 30 2024

Crossrefs

Cf. A010709, A047522. [Vincenzo Librandi, Feb 14 2009]
Cf. A266883 (numbers n such that 16*n-15 is a square).

Programs

  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
  • Maple
    a:=n->(2*n+1)*floor((n+1)/2): seq(a(n),n=0..50); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)
    Select[Accumulate[Range[0,100]],EvenQ]/2 (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    a(n)=(2*n+1)*(n-n\2)
    

Formula

Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).
a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.
G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).
From Benoit Jubin, Feb 05 2009: (Start)
a(n) = (2*n + 1)*floor((n + 1)/2).
a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)
a(2*n) = A007742(n), a(2*n-1) = A033991(n). - Arkadiusz Wesolowski, Jul 20 2012
a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019
a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)
a(n) = A014494(n)/2 = A274757(n)/3 = A266883(n) - 1. - Hugo Pfoertner, Dec 31 2024

A063448 Decimal expansion of Pi * sqrt(2).

Original entry on oeis.org

4, 4, 4, 2, 8, 8, 2, 9, 3, 8, 1, 5, 8, 3, 6, 6, 2, 4, 7, 0, 1, 5, 8, 8, 0, 9, 9, 0, 0, 6, 0, 6, 9, 3, 6, 9, 8, 6, 1, 4, 6, 2, 1, 6, 8, 9, 3, 7, 5, 6, 9, 0, 2, 2, 3, 0, 8, 5, 3, 9, 5, 6, 0, 6, 9, 5, 6, 4, 3, 4, 7, 9, 3, 0, 9, 9, 4, 7, 3, 9, 1, 0, 5, 7, 5, 3, 2, 6, 9, 3, 4, 7, 6, 4, 7, 6, 5, 2, 3
Offset: 1

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Hypotenuse of the right triangle with legs Pi and Pi. - Zak Seidov, May 04 2005
Circumference of the circumcircle of the unit square. - Jonathan Sondow, Nov 23 2017
Half-perimeter of the closed curve with implicit Cartesian equation x^2 + y^2 = abs(x) + abs(y). - Stefano Spezia, Oct 20 2020

Examples

			4.4428829381583662470158809900606936986146216893756902230853...
		

Crossrefs

Cf. A063447 (continued fraction), A093954, A153799, A193887, A244976, A247719.

Programs

  • Mathematica
    RealDigits[N[Pi*Sqrt[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
  • PARI
    \p 400; Pi * sqrt(2)
    
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b063448.txt", n, " ", d)) \\ Harry J. Smith, Aug 21 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (1/8) P(1, 64, 12, (32, 0, 8, 0, 8, 0, -4, 0, -1, 0, -1, 0))
    from decimal import Decimal as dec, getcontext
    def BBPpisqrt2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            twk = dec(12 * k)
            s += f * ( dec(32) / (twk + 1) + dec(8)  / (twk + 3)
                     + dec(8)  / (twk + 5) - dec(4)  / (twk + 7)
                     - dec(1)  / (twk + 9) - dec(1)  / (twk + 11))
            f /= g
        return s / dec(8)
    print(BBPpisqrt2(200))  # Peter Luschny, Nov 03 2023

Formula

Equals Gamma(1/4)*Gamma(3/4). - Jean-François Alcover, Nov 24 2014
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} log(1 + 1/x^4) dx.
Equals Integral_{x=0..oo} log(1 + 2/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/4)/(exp(x) + 1) dx.
Equals Integral_{x=0..2*Pi} 1/(cos(x)^2 + 1) dx = Integral_{x=0..2*Pi} 1/(sin(x)^2 + 1) dx. (End)
From Andrea Pinos, Jul 03 2023: (Start)
Equals (Product_{k=1..4} Gamma(k/8)*Gamma(1 - k/8))^(1/4).
General result: 2*Pi/(4*y)^(1/(2*y)) = (Product_{k=1..y} Gamma(k/(2*y))*Gamma(1 - k/(2*y)) )^(1/y). (End)
From Peter Bala, Oct 22 2023: (Start)
sqrt(2)*Pi = 4 + 8*Sum_{n >= 0} (-1)^n/(16*n^2 + 32*n + 15). See A141759.
In the following the Eisenstein summation convention is assumed: that is,
Sum_{n = -oo..oo} means Limit_{N -> oo} Sum_{n = -N..N}:
sqrt(2)*Pi = 4*Sum_{n = -oo..oo} (-1)^n/(4*n + 1).
More generally, it appears that for k >= 0, k not of the form 4*m + 1,
sqrt(2)*Pi = -sign(cos(Pi*(k - 3)/4)) * 4*(2^floor(k/2))*k! * Sum_{n = -oo..oo} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 2*k + 1)) (verified up to k = 50).
sqrt(2)*Pi = (2^4)*Sum_{n >= 0} (-1)^n * (2*n + 1)/((4*n + 1)*(4*n + 3)) = 512/105 - (2^6)*4!*Sum_{n >= 0} (-1)^n * (2*n + 3)/((4*n + 1)*(4*n + 3)*...*(4*n + 11)).
sqrt(2)*Pi = 4 + (2^3)*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*(4*n + 5)) = 1408/315 - (2^5)*5!*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 13)).
sqrt(2)*Pi = 16/3 - (2^4)*3!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7)) = 14848/3465 + (2^6)*7!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 15)). (End)
From Peter Bala, Nov 19 2023: (Start)
sqrt(2)*Pi = 512*Sum_{k >= 1} (-1)^(k+1) * k^2/((16*k^2 - 1)*(16*k^2 - 9)).
This is the case n = 1 of the more general result: for n >= 1,
sqrt(2)*Pi = (-1)^(n+1) * 2^(n+7) * (2*n)!/(2*n - 1) * Sum_{k >= 1} (-1)^(k+1) * k^2/( Product_{i = 0..n} (16*k^2 - (2*i+1)^2) ). Cf. A334422. (End)
Equals Integral_{x=-oo..oo} (x^2 + 1)/(x^4 + 1) dx. - Kritsada Moomuang, Jun 04 2025

Extensions

Edited by N. J. A. Sloane, May 05 2007
Corrected by Neven Juric, Apr 24 2008

A180434 Decimal expansion of constant (2 - Pi/2).

Original entry on oeis.org

4, 2, 9, 2, 0, 3, 6, 7, 3, 2, 0, 5, 1, 0, 3, 3, 8, 0, 7, 6, 8, 6, 7, 8, 3, 0, 8, 3, 6, 0, 2, 4, 8, 5, 5, 7, 9, 0, 1, 4, 1, 5, 3, 0, 0, 3, 1, 2, 4, 4, 7, 0, 8, 9, 5, 1, 2, 5, 2, 7, 7, 0, 3, 8, 4, 6, 0, 9, 1, 7, 9, 6, 8, 5, 6, 8, 9, 5, 5, 0, 0, 6, 8, 5, 9, 8, 2, 5, 8, 7, 3, 2, 8, 9, 4, 1, 4, 6, 6
Offset: 0

Author

Jonathan Vos Post, Sep 05 2010

Keywords

Comments

(2-Pi/2)*a^2 is the area of the loop of the right strophoid (also called the Newton strophoid) whose polar equation is r = a*cos(2*t)/cos(t) and whose Cartesian equation is x*(x^2+y^2) = a*(x^2-y^2) or y = +- x*sqrt((a-x)/(a+x)). See the curve with its loop at the Mathcurve link; the loop appears for -Pi/4 <= t <= Pi/4. - Bernard Schott, Jan 28 2020

Examples

			0.42920367320510338076867830836024855790141530...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2-Pi/2,10,120][[1]] (* Harvey P. Dale, Oct 12 2013 *)

Formula

Equals Integral_{t=0..Pi/4} ((cos(2*t))/cos(t))^2 dt. - Bernard Schott, Jan 28 2020
From Amiram Eldar, May 30 2021: (Start)
Equals Sum_{k>=1} 2^k/(binomial(2*k,k)*k*(2*k + 1)).
Equals Integral_{x=0..1} arcsin(x)*arccos(x) dx. (End)
Equals Integral_{x=0..1} sqrt(x)/(1+x) dx. - Andy Nicol, Mar 23 2024
Equals A153799/2. - Hugo Pfoertner, Mar 23 2024

Extensions

Corrected by Carl R. White, Sep 09 2010
More terms from N. J. A. Sloane, Sep 23 2010

A210958 Decimal expansion of 1 - (Pi/4).

Original entry on oeis.org

2, 1, 4, 6, 0, 1, 8, 3, 6, 6, 0, 2, 5, 5, 1, 6, 9, 0, 3, 8, 4, 3, 3, 9, 1, 5, 4, 1, 8, 0, 1, 2, 4, 2, 7, 8, 9, 5, 0, 7, 0, 7, 6, 5, 0, 1, 5, 6, 2, 2, 3, 5, 4, 4, 7, 5, 6, 2, 6, 3, 8, 5, 1, 9, 2, 3, 0, 4, 5, 8, 9, 8, 4, 2, 8, 4, 4, 7, 7, 5, 0, 3, 4, 2, 9, 9, 1
Offset: 0

Author

Omar E. Pol, Aug 02 2012

Keywords

Comments

Decimal expansion of (4 - Pi)/4.
Area between a square and the inscribed quarter circle of radius 1.
Also area between a circle of radius 1 and the circumscribed square, divided by 4.
Also area between a circle of diameter 1 and the circumscribed square. - Omar E. Pol, Sep 24 2013
Also volume between a cube of side length 1 and the inscribed cylinder. - Omar E. Pol, Sep 25 2013

Examples

			0.21460183660255169038433915418012427895070765015622...
		

Crossrefs

Essentially the same as A091651.

Programs

Formula

1 - (Pi/4) = (4 - Pi)/4 = 1 - A003881 = A153799/4.
From Amiram Eldar, Jun 29 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(2*k+3).
Equals Integral_{x=0..Pi/4} tan(x)^2 dx.
Equals Integral_{x=0..1} arcsin(x) dx /(1+x)^2.
Equals Integral_{x=1..oo} dx/(x^2+x^4). (End)
Equals -Integral_{x=0..1, y=0..1} arcsin(x*y)/((1+x*y)^2*log(x*y)) dx dy. (Apply Theorem 1 or Theorem 2 from Glasser (2019) to one of Amiram Eldar's integrals.) - Petros Hadjicostas, Jun 29 2020
Continued fraction 1/(3 + 3^2/(2 + 5^2/(2 + 7^2/(2 + ... )))). - Peter Bala, Feb 28 2024

Extensions

More terms from David Scambler, Aug 02 2012

A210962 Decimal expansion of 4*(2 - Pi/3).

Original entry on oeis.org

3, 8, 1, 1, 2, 0, 9, 7, 9, 5, 2, 1, 3, 6, 0, 9, 0, 1, 5, 3, 8, 3, 1, 4, 2, 1, 5, 5, 6, 2, 7, 3, 2, 9, 4, 8, 7, 7, 3, 7, 1, 0, 7, 4, 6, 7, 4, 9, 9, 8, 5, 8, 9, 0, 5, 3, 6, 6, 7, 4, 0, 5, 4, 3, 5, 8, 9, 5, 7, 8, 1, 2, 4, 9, 5, 1, 7, 2, 1, 3, 3, 5, 1, 6, 2, 6, 2
Offset: 1

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Volume between a sphere of radius 1 and the circumscribed cube.

Examples

			3.8112097952136090153831...
		

Crossrefs

Programs

Formula

4*(2 - Pi/3) = 8 - 4*Pi/3 = 8 - A019699.
Showing 1-5 of 5 results.