cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A154563 Averages of twin prime pairs of A074378.

Original entry on oeis.org

18, 60, 138, 150, 1278, 1620, 2730, 4128, 6360, 11718, 13398, 17490, 20808, 23028, 28308, 29670, 51870, 61380, 69828, 73848, 78540, 92568, 97500, 115770, 138570, 166668, 176610, 193380, 200928, 258318, 304980, 430008, 500910, 518760, 536190
Offset: 1

Views

Author

Keywords

Comments

18-1=17;18+1=19,...

Programs

  • Mathematica
    q=2;lst={};s=0;Do[s+=n/q;If[Floor[s]==s,If[PrimeQ[s-1]&&PrimeQ[s+1],AppendTo[lst,s]]],{n,0,8!}];lst

A347365 a(n) = n * (2-(-1)^n), or zero together with first differences of even triangular numbers halved (A074378).

Original entry on oeis.org

0, 3, 2, 9, 4, 15, 6, 21, 8, 27, 10, 33, 12, 39, 14, 45, 16, 51, 18, 57, 20, 63, 22, 69, 24, 75, 26, 81, 28, 87, 30, 93, 32, 99, 34, 105, 36, 111, 38, 117, 40, 123, 42, 129, 44, 135, 46, 141, 48, 147, 50, 153, 52, 159, 54, 165, 56, 171, 58, 177, 60, 183, 62, 189, 64
Offset: 0

Views

Author

Federico Provvedi, Aug 29 2021

Keywords

Comments

This sequence and A165998 form a complementary pair as solutions of alternating sequences a(n) + b(n) = 4*n (A008586), and a(n)*b(n) = 3*n^2 (A033428).
This is the particular case of the two integer sequences x(n)=2n and y(n)=n, where more generally, x(n) + y(n) = 2*a(n) and x(n)*y(n) = (a(n) + b(n)) * (a(n) - b(n)) give the two conjugate binomials a(n) = x(n) + (-1)^n*y(n) and b(n) = x(n) - (-1)^n*y(n) as solutions over the integer domain.
a(n) is also A005843 and A016945 interleaved.
For every integer k: a(n*k) = n*k is multiplicative for nonnegative even integers n and a(n*k) = n*a(k) for nonnegative odd integers n.
For every nonnegative odd integer k, the k-th difference of a(k*n)/k = (2n+1)*(-1)^n + 2 = A166519(n), and 1 for all nonnegative even integers.
a(6n+1)/3 = 6n+1, and a(6n+5)/3 = 6n+5, related to Collatz Conjecture.
Half-periods of a(k) mod n is A026741(n).

Crossrefs

Programs

  • Mathematica
    Table[n(2-(-1)^n),{n,0,99}] (* or *)
    LinearRecurrence[{0,2,0,-1}, {0,3,2,9}, 100] (* or *)
    If[EvenQ@#,#,3#]&/@Range[0,99]  (* or *)
    Drop[Flatten@Transpose[{2#,6#+3}&@Range[0,Quotient[#,2]]],-Boole@EvenQ@#]&@(10^2)
  • PARI
    a(n) = n*(2-(-1)^n); \\ Michel Marcus, Sep 13 2021
  • Sage
    (x*(3+2*x+3*x^2)/(1-x^2)^2).series(x,65).coefficients(x,sparse=False) # Stefano Spezia, Aug 30 2021
    

Formula

G.f.: x*(3 + 2*x + 3*x^2)/(1 - x^2)^2.
E.g.f.: x*(3*cosh(x) + sinh(x)).
Dirichlet g.f.: 2^(-s) * (3*2^s - 4) * zeta(s-1) = (3 - 4/2^s) * zeta(s-1) = (3 - 1/2^(s-2)) * zeta(s-1).
a(n) = n*(2-(-1)^n) = 3*n / (2+(-1)^n).
a(n) = 3*n if n odd, a(n) = n if n even, implies a(a(2n)) = 2n, a(a(2n+1)) = 9*a(2n+1).
a(n) = 3*b(n), if n odd and a(n) = b(n)/3, if n even, with b(n) = A165998(n).
a(n) = a(a(2k*n)/(2k)) = a((2k+1)*n) / (2k+1), since a(2*k*n) / (2*k) = n.
a(n) = 4*n - A165998(n).
a(n+1) = a(n) + A086970(n+1)*(-1)^n.
a(n) = 2*A014682(n) - A000035(n).
a(n) = n*A010684(n). - Michel Marcus, Sep 13 2021
For positive integers k and n, a(n) = A(n,1) = n * (A(n,k)/n)^(1/k), where the k-th nesting composition A(n,k) = a(a(...a(a(n))...)) = n * ( a(n) / n )^k, and d.g.f. of A(n,k) = (2^(1-s) + (1-2^(1-s))*3^k) * zeta(s-1). - Federico Provvedi, Sep 18 2021
a(n+1) = A165998(n)*(1 + 1/n). - Federico Provvedi, Sep 19 2021

A001318 Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ....

Original entry on oeis.org

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A026741. - Jud McCranie; corrected by Omar E. Pol, Jul 05 2012
From R. K. Guy, Dec 28 2005: (Start)
"Conway's relation twixt the triangular and pentagonal numbers: Divide the triangular numbers by 3 (when you can exactly):
0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 ...
0 - 1 2 .- .5 .7 .- 12 15 .- 22 26 .- .35 .40 .- ..51 ...
.....-.-.....+..+.....-..-.....+..+......-...-.......+....
"and you get the pentagonal numbers in pairs, one of positive rank and the other negative.
"Append signs according as the pair have the same (+) or opposite (-) parity.
"Then Euler's pentagonal number theorem is easy to remember:
"p(n-0) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - p(n-15) ++-- = 0^n
where p(n) is the partition function, the left side terminates before the argument becomes negative and 0^n = 1 if n = 0 and = 0 if n > 0.
"E.g. p(0) = 1, p(7) = p(7-1) + p(7-2) - p(7-5) - p(7-7) + 0^7 = 11 + 7 - 2 - 1 + 0 = 15."
(End)
The sequence may be used in order to compute sigma(n), as described in Euler's article. - Thomas Baruchel, Nov 19 2003
Number of levels in the partitions of n + 1 with parts in {1,2}.
a(n) is the number of 3 X 3 matrices (symmetrical about each diagonal) M = {{a, b, c}, {b, d, b}, {c, b, a}} such that a + b + c = b + d + b = n + 2, a,b,c,d natural numbers; example: a(3) = 5 because (a,b,c,d) = (2,2,1,1), (1,2,2,1), (1,1,3,3), (3,1,1,3), (2,1,2,3). - Philippe Deléham, Apr 11 2007
Also numbers a(n) such that 24*a(n) + 1 = (6*m - 1)^2 are odd squares: 1, 25, 49, 121, 169, 289, 361, ..., m = 0, +-1, +-2, ... . - Zak Seidov, Mar 08 2008
From Matthew Vandermast, Oct 28 2008: (Start)
Numbers n for which A000326(n) is a member of A000332. Cf. A145920.
This sequence contains all members of A000332 and all nonnegative members of A145919. For values of n such that n*(3*n - 1)/2 belongs to A000332, see A145919. (End)
Starting with offset 1 = row sums of triangle A168258. - Gary W. Adamson, Nov 21 2009
Starting with offset 1 = Triangle A101688 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
Starting with offset 1 can be considered the first in an infinite set generated from A026741. Refer to the array in A175005. - Gary W. Adamson, Apr 03 2010
Vertex number of a square spiral whose edges have length A026741. The two axes of the spiral forming an "X" are A000326 and A005449. The four semi-axes forming an "X" are A049452, A049453, A033570 and the numbers >= 2 of A033568. - Omar E. Pol, Sep 08 2011
A general formula for the generalized k-gonal numbers is given by n*((k - 2)*n - k + 4)/2, n=0, +-1, +-2, ..., k >= 5. - Omar E. Pol, Sep 15 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2*w = 2*x + y. - Clark Kimberling, Jun 04 2012
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. - Omar E. Pol, Aug 04 2012
a(n) is the sum of the largest parts of the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 26 2013
Conway's relation mentioned by R. K. Guy is a relation between triangular numbers and generalized pentagonal numbers, two sequences from different families, but as triangular numbers are also generalized hexagonal numbers in this case we have a relation between two sequences from the same family. - Omar E. Pol, Feb 01 2013
Start with the sequence of all 0's. Add n to each value of a(n) and the next n - 1 terms. The result is the generalized pentagonal numbers. - Wesley Ivan Hurt, Nov 03 2014
(6k + 1) | a(4k). (3k + 1) | a(4k+1). (3k + 2) | a(4k+2). (6k + 5) | a(4k+3). - Jon Perry, Nov 04 2014
Enge, Hart and Johansson proved: "Every generalised pentagonal number c >= 5 is the sum of a smaller one and twice a smaller one, that is, there are generalised pentagonal numbers a, b < c such that c = 2a + b." (see link theorem 5). - Peter Luschny, Aug 26 2016
The Enge, et al. result for c >= 5 also holds for c >= 2 if 0 is included as a generalized pentagonal number. That is, 2 = 2*1 + 0. - Michael Somos, Jun 02 2018
Suggestion for title, where n actually matches the list and b-file: "Generalized pentagonal numbers: k(n)*(3*k(n) - 1)/2, where k(n) = A001057(n) = [0, 1, -1, 2, -2, 3, -3, ...], n >= 0" - Daniel Forgues, Jun 09 2018 & Jun 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 25 2018
The last digits form a symmetric cycle of length 40 [0, 1, 2, 5, ..., 5, 2, 1, 0], i.e., a(n) == a(n + 40) (mod 10) and a(n) == a(40*k - n - 1) (mod 10), 40*k > n. - Alejandro J. Becerra Jr., Aug 14 2018
Only 2, 5, and 7 are prime. All terms are of the form k*(k+1)/6, where 3 | k or 3 | k+1. For k > 6, the value divisible by 3 must have another factor d > 2, which will remain after the division by 6. - Eric Snyder, Jun 03 2022
8*a(n) is the product of two even numbers one of which is n + n mod 2. - Peter Luschny, Jul 15 2022
a(n) is the dot product of [1, 2, 3, ..., n] and repeat[1, 1/2]. a(5) = 12 = [1, 2, 3, 4, 5] dot [1, 1/2, 1, 1/2, 1] = [1 + 1 + 3 + 2 + 5]. - Gary W. Adamson, Dec 10 2022
Every nonnegative number is the sum of four terms of this sequence [S. Realis]. - N. J. A. Sloane, May 07 2023
From Peter Bala, Jan 06 2025: (Start)
The sequence terms are the exponents in the expansions of the following infinite products:
1) Product_{n >= 1} (1 - s(n)*q^n) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ..., where s(n) = (-1)^(1 + mod(n+1,3)).
2) Product_{n >= 1} (1 - q^(2*n))*(1 - q^(3*n))^2/((1 - q^n)*(1 - q^(6*n))) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ....
3) Product_{n >= 1} (1 - q^n)*(1 - q^(4*n))*(1 - q^(6*n))^5/((1 - q^(2*n))*(1 - q^(3*n))*(1 - q^(12*n)))^2 = 1 - q + q^2 - q^5 - q^7 + q^12 - q^15 + q^22 + q^26 - q^35 + ....
4) Product_{n >= 1} (1 - q^(2*n))^13/((1 - (-1)^n*q^n)*(1 - q^(4*n)))^5 = 1 - 5*q + 7*q^2 - 11*q^5 + 13*q^7 - 17*q^12 + 19*q^15 - + .... See Oliver, Theorem 1.1. (End)

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 7*x^4 + 12*x^5 + 15*x^6 + 22*x^7 + 26*x^8 + 35*x^9 + ...
		

References

  • Enoch Haga, A strange sequence and a brilliant discovery, chapter 5 of Exploring prime numbers on your PC and the Internet, first revised ed., 2007 (and earlier ed.), pp. 53-70.
  • Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 117.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, (to appear), section 7.2.1.4, equation (18).
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., Wiley, NY, 1966, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A080995 (characteristic function), A026741 (first differences), A034828 (partial sums), A165211 (mod 2).
Cf. A000326 (pentagonal numbers), A005449 (second pentagonal numbers), A000217 (triangular numbers).
Indices of nonzero terms of A010815, i.e., the (zero-based) indices of 1-bits of the infinite binary word to which the terms of A068052 converge.
Union of A036498 and A036499.
Sequences of generalized k-gonal numbers: this sequence (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Column 1 of A195152.
Squares in APs: A221671, A221672.
Quadrisection: A049453(k), A033570(k), A033568(k+1), A049452(k+1), k >= 0.
Cf. A002620.

Programs

  • GAP
    a:=[0,1,2,5];; for n in [5..60] do a[n]:=2*a[n-2]-a[n-4]+3; od; a; # Muniru A Asiru, Aug 16 2018
    
  • Haskell
    a001318 n = a001318_list !! n
    a001318_list = scanl1 (+) a026741_list -- Reinhard Zumkeller, Nov 15 2015
    
  • Magma
    [(6*n^2 + 6*n + 1 - (2*n + 1)*(-1)^n)/16 : n in [0..50]]; // Wesley Ivan Hurt, Nov 03 2014
    
  • Magma
    [(3*n^2 + 2*n + (n mod 2) * (2*n + 1)) div 8: n in [0..70]]; // Vincenzo Librandi, Nov 04 2014
    
  • Maple
    A001318 := -(1+z+z**2)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
    A001318 := proc(n) (6*n^2+6*n+1)/16-(2*n+1)*(-1)^n/16 ; end proc: # R. J. Mathar, Mar 27 2011
  • Mathematica
    Table[n*(n+1)/6, {n, Select[Range[0, 100], Mod[#, 3] != 1 &]}]
    Select[Accumulate[Range[0,200]]/3,IntegerQ] (* Harvey P. Dale, Oct 12 2014 *)
    CoefficientList[Series[x (1 + x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,2,5,7},70] (* Harvey P. Dale, Jun 05 2017 *)
    a[ n_] := With[{m = Quotient[n + 1, 2]}, m (3 m + (-1)^n) / 2]; (* Michael Somos, Jun 02 2018 *)
  • PARI
    {a(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( x * (1 - x^3) / ((1 - x) * (1-x^2))^2 + x * O(x^n), n)}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = my(m = (n+1) \ 2); m * (3*m + (-1)^n) / 2}; /* Michael Somos, Jun 02 2018 */
    
  • Python
    def a(n):
        p = n % 2
        return (n + p)*(3*n + 2 - p) >> 3
    print([a(n) for n in range(60)])  # Peter Luschny, Jul 15 2022
    
  • Python
    def A001318(n): return n*(n+1)-(m:=n>>1)*(m+1)>>1 # Chai Wah Wu, Nov 23 2024
  • Sage
    @CachedFunction
    def A001318(n):
        if n == 0 : return 0
        inc = n//2 if is_even(n) else n
        return inc + A001318(n-1)
    [A001318(n) for n in (0..59)] # Peter Luschny, Oct 13 2012
    

Formula

Euler: Product_{n>=1} (1 - x^n) = Sum_{n=-oo..oo} (-1)^n*x^(n*(3*n - 1)/2).
A080995(a(n)) = 1: complement of A090864; A000009(a(n)) = A051044(n). - Reinhard Zumkeller, Apr 22 2006
Euler transform of length-3 sequence [2, 2, -1]. - Michael Somos, Mar 24 2011
a(-1 - n) = a(n) for all n in Z. a(2*n) = A005449(n). a(2*n - 1) = A000326(n). - Michael Somos, Mar 24 2011. [The extension of the recurrence to negative indices satisfies the signature (1,2,-2,-1,1), but not the definition of the sequence m*(3*m -1)/2, because there is no m such that a(-1) = 0. - Klaus Purath, Jul 07 2021]
a(n) = 3 + 2*a(n-2) - a(n-4). - Ant King, Aug 23 2011
Product_{k>0} (1 - x^k) = Sum_{k>=0} (-1)^k * x^a(k). - Michael Somos, Mar 24 2011
G.f.: x*(1 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(n + 1)/6 when n runs through numbers == 0 or 2 mod 3. - Barry E. Williams
a(n) = A008805(n-1) + A008805(n-2) + A008805(n-3), n > 2. - Ralf Stephan, Apr 26 2003
Sequence consists of the pentagonal numbers (A000326), followed by A000326(n) + n and then the next pentagonal number. - Jon Perry, Sep 11 2003
a(n) = (6*n^2 + 6*n + 1)/16 - (2*n + 1)*(-1)^n/16; a(n) = A034828(n+1) - A034828(n). - Paul Barry, May 13 2005
a(n) = Sum_{k=1..floor((n+1)/2)} (n - k + 1). - Paul Barry, Sep 07 2005
a(n) = A000217(n) - A000217(floor(n/2)). - Pierre CAMI, Dec 09 2007
If n even a(n) = a(n-1) + n/2 and if n odd a(n) = a(n-1) + n, n >= 2. - Pierre CAMI, Dec 09 2007
a(n)-a(n-1) = A026741(n) and it follows that the difference between consecutive terms is equal to n if n is odd and to n/2 if n is even. Hence this is a self-generating sequence that can be simply constructed from knowledge of the first term alone. - Ant King, Sep 26 2011
a(n) = (1/2)*ceiling(n/2)*ceiling((3*n + 1)/2). - Mircea Merca, Jul 13 2012
a(n) = (A008794(n+1) + A000217(n))/2 = A002378(n) - A085787(n). - Omar E. Pol, Jan 12 2013
a(n) = floor((n + 1)/2)*((n + 1) - (1/2)*floor((n + 1)/2) - 1/2). - Wesley Ivan Hurt, Jan 26 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A026741(n),
a(n) = a(n+2) - A001651(n),
a(n) = a(n+3) - A184418(n),
a(n) = a(n+4) - A007310(n),
a(n) = a(n+6) - A001651(n)*3 = a(n+6) - A016051(n),
a(n) = a(n+8) - A007310(n)*2 = a(n+8) - A091999(n),
a(n) = a(n+10)- A001651(n)*5 = a(n+10)- A072703(n),
a(n) = a(n+12)- A007310(n)*3,
a(n) = a(n+14)- A001651(n)*7. (End)
a(n) = (A007310(n+1)^2 - 1)/24. - Richard R. Forberg, May 27 2013; corrected by Zak Seidov, Mar 14 2015; further corrected by Jianing Song, Oct 24 2018
a(n) = Sum_{i = ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
G.f.: x*G(0), where G(k) = 1 + x*(3*k + 4)/(3*k + 2 - x*(3*k + 2)*(3*k^2 + 11*k + 10)/(x*(3*k^2 + 11*k + 10) + (k + 1)*(3*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
Sum_{n>=1} 1/a(n) = 6 - 2*Pi/sqrt(3). - Vaclav Kotesovec, Oct 05 2016
a(n) = Sum_{i=1..n} numerator(i/2) = Sum_{i=1..n} denominator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = A000292(A001651(n))/A001651(n), for n>0. - Ivan N. Ianakiev, May 08 2018
a(n) = ((-5 + (-1)^n - 6n)*(-1 + (-1)^n - 6n))/96. - José de Jesús Camacho Medina, Jun 12 2018
a(n) = Sum_{k=1..n} k/gcd(k,2). - Pedro Caceres, Apr 23 2019
Quadrisection. For r = 0,1,2,3: a(r + 4*k) = 6*k^2 + sqrt(24*a(r) + 1)*k + a(r), for k >= 1, with inputs (k = 0) {0,1,2,5}. These are the sequences A049453(k), A033570(k), A033568(k+1), A049452(k+1), for k >= 0, respectively. - Wolfdieter Lang, Feb 12 2021
a(n) = a(n-4) + sqrt(24*a(n-2) + 1), n >= 4. - Klaus Purath, Jul 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(log(3)-1). - Amiram Eldar, Feb 28 2022
a(n) = A002620(n) + A008805(n-1). Gary W. Adamson, Dec 10 2022
E.g.f.: (x*(7 + 3*x)*cosh(x) + (1 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Aug 01 2024

A074377 Generalized 10-gonal numbers: m*(4*m - 3) for m = 0, +- 1, +- 2, +- 3, ...

Original entry on oeis.org

0, 1, 7, 10, 22, 27, 45, 52, 76, 85, 115, 126, 162, 175, 217, 232, 280, 297, 351, 370, 430, 451, 517, 540, 612, 637, 715, 742, 826, 855, 945, 976, 1072, 1105, 1207, 1242, 1350, 1387, 1501, 1540, 1660, 1701, 1827, 1870, 2002, 2047, 2185, 2232, 2376, 2425
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Also called generalized decagonal numbers.
Odd triangular numbers decremented and halved.
It appears that this is zero together with the partial sums of A165998. - Omar E. Pol, Sep 10 2011 [this is correct, see the g.f., Joerg Arndt, Sep 29 2013]
Also, A033954 and positive members of A001107 interleaved. - Omar E. Pol, Aug 04 2012
Also, numbers m such that 16*m+9 is a square. After 1, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016
Convolution of the sequences A047522 and A059841. - Ilya Gutkovskiy, Mar 16 2017
Numbers k such that the concatenation k5625 is a square. - Bruno Berselli, Nov 07 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(8*n-7))*(1 + x^(8*n-1))*(1 - x^(8*n)) = 1 + x + x^7 + x^10 + x^22 + .... - Peter Bala, Dec 10 2020

Crossrefs

Cf. A001107 (10-gonal numbers).
Column 6 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), this sequence (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • Magma
    [n^2+n-1/4+(-1)^n/4+n*(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Sep 29 2013
    
  • Mathematica
    CoefficientList[Series[x(1 +6x +x^2)/((1-x)(1-x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 29 2013 *)
    LinearRecurrence[{1,2,-2,-1,1}, {0,1,7,10,22}, 50] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    a(n)=(2*n+3-4*(n%2))*(n-n\2)
    
  • PARI
    concat([0],Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - x^2)^2) +O(x^50))) \\ Indranil Ghosh, Mar 16 2017
    
  • Python
    def A074377(n): return (n+1>>1)*((n<<1)+(-1 if n&1 else 3)) # Chai Wah Wu, Mar 11 2025

Formula

(n(n+1)-2)/4 where n(n+1)/2 is odd.
G.f.: x*(1+6*x+x^2)/((1-x)*(1-x^2)^2). - Michael Somos, Mar 04 2003
a(2*k) = k*(4*k+3); a(2*k+1) = (2*k+1)^2+k. - Benoit Jubin, Feb 05 2009
a(n) = n^2+n-1/4+(-1)^n/4+n*(-1)^n/2. - R. J. Mathar, Oct 08 2011
Sum_{n>=1} 1/a(n) = (4 + 3*Pi)/9. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: exp(x)*x^2 + (2*exp(x) - exp(-x)/2)*x - sinh(x)/2. - Ilya Gutkovskiy, Mar 16 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) - 4/9. - Amiram Eldar, Feb 28 2022
a(n) = (n+1)*(2*n-1)/2 if n is odd and a(n) = n*(2*n+3)/2 if n is even. - Chai Wah Wu, Mar 11 2025

Extensions

New name from T. D. Noe, Apr 21 2006
Formula in sequence name from Omar E. Pol, May 28 2012

A007742 a(n) = n*(4*n+1).

Original entry on oeis.org

0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives the numbers that fall on the positive y-axis. (See Example section.)
Central terms of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
a(n)*Pi is the total length of 4 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A004770. The spiral length ratio rounded down [floor(L(n)/L(1))] is A047497. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n; {4, 4n}]. For n=1, this collapses to [2, {4}]. - Magus K. Chu, Sep 15 2022

Examples

			Part of the spiral:
.
  64--65--66--67--68
   |
  63  36--37--38--39--40--41--42
   |   |                       |
  62  35  16--17--18--19--20  43
   |   |   |               |   |
  61  34  15   4---5---6  21  44
   |   |   |   |       |   |   |
  60  33  14   3   0   7  22  45
   |   |   |   |   |   |   |   |
  59  32  13   2---1   8  23  46
   |   |   |           |   |   |
  58  31  12--11--10---9  24  47
   |   |                   |   |
  57  30--29--28--27--26--25  48
   |                           |
  56--55--54--53--52--51--50--49
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A081266.

Programs

  • Magma
    I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *)
    Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    a(n)=4*n^2+n
    

Formula

G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A033991(-n) = A074378(2*n).
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A110654(n) + A173511(n) = A002943(n) - n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010
Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013
a(n) = A000217(3*n) - A000217(n). - Bruno Berselli, Sep 21 2016
E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)
a(n) = A081266(n) - A000217(n). - Leo Tavares, Mar 25 2022

A033991 a(n) = n*(4*n-1).

Original entry on oeis.org

0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022

Examples

			Clockwise spiral (with sequence terms parenthesized) begins
   16--17--18--19
    |
   15   4---5---6
    |   |       |
  (14) (3) (0)  7
    |   |   |   |
   13   2---1   8
    |           |
   12--11--10---9
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022

Extensions

Two remarks combined into one by Emeric Deutsch, Oct 03 2010

A047522 Numbers that are congruent to {1, 7} mod 8.

Original entry on oeis.org

1, 7, 9, 15, 17, 23, 25, 31, 33, 39, 41, 47, 49, 55, 57, 63, 65, 71, 73, 79, 81, 87, 89, 95, 97, 103, 105, 111, 113, 119, 121, 127, 129, 135, 137, 143, 145, 151, 153, 159, 161, 167, 169, 175, 177, 183, 185, 191, 193, 199, 201, 207, 209, 215, 217, 223, 225, 231, 233
Offset: 1

Views

Author

Keywords

Comments

Also n such that Kronecker(2,n) = mu(gcd(2,n)). - Jon Perry and T. D. Noe, Jun 13 2003
Also n such that x^2 == 2 (mod n) has a solution. The primes are given in sequence A001132. - T. D. Noe, Jun 13 2003
As indicated in the formula, a(n) is related to the even triangular numbers. - Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 17 2004
Cf. property described by Gary Detlefs in A113801: more generally, these a(n) are of the form (2*h*n + (h-4)*(-1)^n-h)/4 (h,n natural numbers). Therefore a(n)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 8). Also a(n)^2 - 1 == 0 (mod 16). - Bruno Berselli, Nov 17 2010
A089911(3*a(n)) = 2. - Reinhard Zumkeller, Jul 05 2013
S(a(n+1)/2, 0) = (1/2)*(S(a(n+1), sqrt(2)) - S(a(n+1) - 2, sqrt(2))) = T(a(n+1), sqrt(2)/2) = cos(a(n+1)*Pi/4) = sqrt(2)/2 = A010503, identically for n >= 0, where S is the Chebyshev polynomial (A049310) here extended to fractional n, evaluated at x = 0. (For T see A053120.) - Wolfdieter Lang, Jun 04 2023

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 16.

Crossrefs

Programs

  • Haskell
    a047522 n = a047522_list !! (n-1)
    a047522_list = 1 : 7 : map (+ 8) a047522_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    Select[Range[1, 191, 2], JacobiSymbol[2, # ]==1&]
  • PARI
    a(n)=4*n-2+(-1)^n \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = sqrt(8*A014494(n)+1) = sqrt(16*ceiling(n/2)*(2*n+1)+1) = sqrt(8*A056575(n)-8*(2n+1)*(-1)^n+1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 17 2004
1 - 1/7 + 1/9 - 1/15 + 1/17 - ... = (Pi/8)*(1 + sqrt(2)). [Jolley] - Gary W. Adamson, Dec 16 2006
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = 4n - 2 + (-1)^n = a(n-2) + 8.
G.f.: x(1+6x+x^2)/((1+x)(1-x)^2). (End)
a(n) = 8*n - a(n-1) - 8. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 8*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
E.g.f.: 1 + (4*x - 1)*cosh(x) + (4*x - 3)*sinh(x). - Stefano Spezia, May 13 2021
E.g.f.: 1 + (4*x - 3)*exp(x) + 2*cosh(x). - David Lovler, Jul 16 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2+sqrt(2)) (A179260).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/8)*cosec(Pi/8) (A352125). (End)

A035294 Number of ways to partition 2n into distinct positive integers.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 22, 32, 46, 64, 89, 122, 165, 222, 296, 390, 512, 668, 864, 1113, 1426, 1816, 2304, 2910, 3658, 4582, 5718, 7108, 8808, 10880, 13394, 16444, 20132, 24576, 29927, 36352, 44046, 53250, 64234, 77312, 92864, 111322, 133184, 159046
Offset: 0

Views

Author

Keywords

Comments

Also, number of partitions of 2n into odd numbers. - Vladeta Jovovic, Aug 17 2004
This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to Reinhard Zumkeller. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
Also, number of partitions of 2n with max descent 1 and last part 1. - Wouter Meeussen, Mar 31 2013

Examples

			a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a035294 n = a035294_list !! n
    a035294_list = f 1 where
       f x = (p' 1 (x - 1)) : f (x + 2)
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
    -- Reinhard Zumkeller, Nov 27 2015
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(2*n, 2*n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 11 2015
  • Mathematica
    Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
    (* Wouter Meeussen, Mar 31 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 06 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};/* Michael Somos, Nov 01 2005 */
    

Formula

a(n) = A000009(2*n). - Michael Somos, Mar 03 2003
Expansion of Sum_{n >= 0} q^n / Product_{k = 1..2*n} (1 - q^k).
a(n) = T(2*n, 0), T as defined in A026835.
G.f.: Product_{i >= 0} ((1 + x^(8*i + 1)) * (1 + x^(8*i + 2))^2 * (1 + x^(8*i + 3))^2 * (1 + x^(8*i + 4))^3 * (1 + x^(8*i + 5))^2 * (1 + x^(8*i + 6))^2 * (1 + x^(8*i + 7)) * (1 + x^(8*i + 8))^3). - Vladeta Jovovic, Oct 10 2004
G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 01 2005
Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - Michael Somos, Dec 17 2002
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
a(n) = A000041(n) + A282893(n). - Michael Somos, Feb 24 2017
Convolution with A000041 is A058696. - Michael Somos, Feb 24 2017
Convolution with A097451 is A262987. - Michael Somos, Feb 24 2017
G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k = 1..n} (1 - x^k). - Peter Bala, Feb 04 2021
G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5))/(1 - q^n). - Peter Bala, Dec 30 2024

A154293 Integers of the form t/6, where t is a triangular number (A000217).

Original entry on oeis.org

0, 1, 6, 11, 13, 20, 35, 46, 50, 63, 88, 105, 111, 130, 165, 188, 196, 221, 266, 295, 305, 336, 391, 426, 438, 475, 540, 581, 595, 638, 713, 760, 776, 825, 910, 963, 981, 1036, 1131, 1190, 1210, 1271, 1376, 1441, 1463, 1530, 1645, 1716, 1740, 1813, 1938, 2015
Offset: 1

Views

Author

Keywords

Comments

Old definition was "Integers of the form: 1/6+2/6+3/6+4/6+5/6+...".
1/6 + 2/6 + 3/6 = 1, 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 + 7/6 + 8/6 = 6, ...
a(n) is the set of all integers k such that 48k+1 is a perfect square. The square roots of 48*a(n) + 1 = 1, 7, 17, 23, 25, ... = 8*(n-floor(n/4)) + (-1)^n. - Gary Detlefs, Mar 01 2010
Conjecture: A193828 divided by 2. - Omar E. Pol, Aug 19 2011
The above conjecture is correct. - Charles R Greathouse IV, Jan 02 2012
Quasipolynomial of order 4. - Charles R Greathouse IV, Jan 02 2012
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^n/Product_{k = 1..2*n} (1 + x^k) = 1 + x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... Cf. A218171. [added Jan 21 2025: this is correct - see Berndt et al., Theorem 3.2.] - Peter Bala, Feb 04 2021
From Peter Bala, Dec 12 2024 (Start)
The sequence terms occur as exponents in the expansion of F(x)*Product_{n >= 1} (1 - x^n) = Product_{n >= 1} (1 - x^n)*(1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)) = 1 - x - x^6 + x^11 + x^13 - x^20 - x^35 + x^46 + x^50 - - + + ..., where F(x) is the g.f. of A069910.
It appears that the sequence terms occur as exponents in the expansion 1/(1 - x) * ( - x^2 + Sum_{n >= 1} x^floor((3*n+1)/2) * 1/Product_{k = 1..n} (1 + x^k) ) = x^6 + x^11 - x^13 - x^20 + x^35 + x^46 - - + + .... (End)
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^(n+1)/Product_{k = 1..2*n+2} (1 + x^k) = x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... - Peter Bala, Jan 21 2025

Examples

			G.f. = x^2 + 6*x^3 + 11*x^4 + 13*x^5 + 20*x^6 + 35*x^7 + 46*x^8 + ...
		

Crossrefs

Programs

  • Magma
    /* By definition: */ [t/6: n in [0..160] | IsIntegral(t/6) where t is n*(n+1)/2]; // Bruno Berselli, Mar 07 2016
  • Maple
    f:=n-> 8*(n-floor(n/4))+(-1)^n:seq((f(n)^2-1)/48,n=0..51); # Gary Detlefs, Mar 01 2010
  • Mathematica
    lst={}; s=0; Do[s+=n/6; If[Floor[s]==s, AppendTo[lst, s]], {n, 0, 7!}]; lst (* Orlovsky *)
    Join[{0}, Select[Table[Plus@@Range[n]/6, {n, 200}], IntegerQ]] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,1,6,11,13,20,35},60] (* Charles R Greathouse IV, Jan 20 2012 *)
    a[ n_] := (3 n^2 + If[ OddQ[ Quotient[ n + 1, 2]], -5 n + 2, -n]) / 4; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := Module[{m = n}, If[ n < 1, m = 1 - n]; SeriesCoefficient[ x^2 (1 + 4 x + x^2) (1 - x^2) (1 - x^6) / ((1 - x)^2 (1 - x^3) (1 - x^4)^2), {x, 0, m}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    a(n)=n--;(8*(n-n\4)+(-1)^n)^2\48 \\ Charles R Greathouse IV, Jan 02 2012
    
  • PARI
    {a(n) = (3*n^2 + if( (n+1)\2%2, -5*n+2,-n)) / 4}; /* Michael Somos, Feb 10 2015 */
    
  • PARI
    {a(n) = if( n<1, n = 1-n); polcoeff( x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2) + x * O(x^n), n)}; /* Michael Somos, Feb 10 2015 */
    

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = A000217(A108752(n))/6.
G.f.: x^2*(x^2-x+1)*(x^2+4*x+1)/((1+x^2)^2*(1-x)^3) (conjectured). (End)
The conjectured g.f. is correct. - Charles R Greathouse IV, Jan 02 2012
a(n) = (f(n)^2-1)/48 where f(n) = 8*(n-floor(n/4))+(-1)^n, with offset 0, a(0)=0. - Gary Detlefs, Mar 01 2010
a(n) = a(1-n) for all n in Z. - Michael Somos, Oct 27 2012
G.f.: x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2). - Michael Somos, Feb 10 2015
Sum_{n>=2} 1/a(n) = 12 - (1+4/sqrt(3))*Pi. - Amiram Eldar, Mar 18 2022
a(n) = A069497(n)/6. - Hugo Pfoertner, Nov 19 2024
From Peter Bala, Jan 21 2025: (Start)
a(4*n) = 12*n^2 - n; a(4*n+1) = 12*n^2 + n;
a(4*n+2) = (3*n + 1)*(4*n + 1) = A033577(n); a(4*n+3) = (3*n + 2)*(4*n + 3) = A033578(n+1).
Let T(n) = n*(n + 1)/2 denote the n-th triangular number. Then
a(4*n) = (1/6) * T(12*n-1); a(4*n+1) = (1/6) * T(12*n);
a(4*n+2) = (1/6) * T(12*n+3); a(4*n+3) = (1/6) * T(12*n+8). (End)

Extensions

Definition rewritten by M. F. Hasler, Dec 31 2012

A058377 Number of solutions to 1 +- 2 +- 3 +- ... +- n = 0.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 4, 7, 0, 0, 35, 62, 0, 0, 361, 657, 0, 0, 4110, 7636, 0, 0, 49910, 93846, 0, 0, 632602, 1199892, 0, 0, 8273610, 15796439, 0, 0, 110826888, 212681976, 0, 0, 1512776590, 2915017360, 0, 0, 20965992017, 40536016030, 0, 0, 294245741167
Offset: 1

Views

Author

Naohiro Nomoto, Dec 19 2000

Keywords

Comments

Consider the set { 1,2,3,...,n }. Sequence gives number of ways this set can be partitioned into 2 subsets with equal sums. For example, when n = 7, { 1,2,3,4,5,6,7} can be partitioned in 4 ways: {1,6,7} {2,3,4,5}; {2,5,7} {1,3,4,6}; {3,4,7} {1,2,5,6} and {1,2,4,7} {3,5,6}. - sorin (yamba_ro(AT)yahoo.com), Mar 24 2007
The "equal sums" of Sorin's comment are the positive terms of A074378 (Even triangular numbers halved). In the current sequence a(n) <> 0 iff n is the positive index (A014601) of an even triangular number (A014494). - Rick L. Shepherd, Feb 09 2010
a(n) is the number of partitions of n(n-3)/4 into distinct parts not exceeding n-1. - Alon Amit, Oct 18 2017
a(n) is the coefficient of x^(n*(n+1)/4-1) of Product_{k=2..n} (1+x^k). - Jianing Song, Nov 19 2021

Examples

			1+2-3=0, so a(3)=1;
1-2-3+4=0, so a(4)=1;
1+2-3+4-5-6+7=0, 1+2-3-4+5+6-7=0, 1-2+3+4-5+6-7=0, 1-2-3-4-5+6+7=0, so a(7)=4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> `if`(irem(n-1, 4)<2, 0, b(n, n-1)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 30 2011
  • Mathematica
    f[n_, s_] := f[n, s] = Which[n == 0, If[s == 0, 1, 0], Abs[s] > (n*(n + 1))/2, 0, True, f[n - 1, s - n] + f[n - 1, s + n]]; Table[ f[n, 0]/2, {n, 1, 50}]
  • PARI
    list(n) = my(poly=vector(n), v=vector(n)); poly[1]=1; for(k=2, n, poly[k]=poly[k-1]*(1+'x^k)); for(k=1, n, if(k%4==1||k%4==2, v[k]=0, v[k]=polcoeff(poly[k], k*(k+1)/4-1))); v \\ Jianing Song, Nov 19 2021

Formula

a(n) is half the coefficient of q^0 in product('(q^(-k)+q^k)', 'k'=1..n) for n >= 1. - Floor van Lamoen, Oct 10 2005
a(4n+1) = a(4n+2) = 0. - Michael Somos, Apr 15 2007
a(n) = [x^n] Product_{k=1..n-1} (x^k + 1/x^k). - Ilya Gutkovskiy, Feb 01 2024

Extensions

More terms from Sascha Kurz, Mar 25 2002
Edited and extended by Robert G. Wilson v, Oct 24 2002
Showing 1-10 of 32 results. Next