cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: W. Neville Holmes

W. Neville Holmes's wiki page.

W. Neville Holmes has authored 15 sequences. Here are the ten most recent ones:

A130699 Numbers n for which neither 2n-3 nor 2n+3 are primes.

Original entry on oeis.org

6, 9, 12, 15, 18, 21, 24, 26, 27, 30, 33, 36, 39, 42, 44, 45, 48, 51, 54, 57, 59, 60, 61, 63, 66, 69, 72, 75, 78, 79, 81, 84, 86, 87, 90, 93, 96, 99, 102, 103, 105, 106, 108, 109, 111, 114, 117, 120, 123, 125, 126, 128, 129, 131, 132, 135, 138, 141, 144, 146
Offset: 2

Author

W. Neville Holmes, Jul 11 2007

Keywords

Examples

			Not 5 because 7 and 13 are prime, but 6 because neither 9 nor 15 are primes.
		

Crossrefs

Cf. A104278.

Programs

  • Mathematica
    Select[Range[200],NoneTrue[2#+{3,-3},PrimeQ]&] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 12 2014 *)
  • PARI
    isok(n) = !isprime(2*n-3) && !isprime(2*n+3) \\ Michel Marcus, Jul 11 2013

Extensions

Missing term 24 added by Michel Marcus, Jul 11 2013

A130771 Numbers n not divisible by 3 for which neither 2n-3 nor 2n+3 are primes.

Original entry on oeis.org

26, 44, 59, 61, 79, 86, 103, 106, 109, 125, 128, 131, 146, 149, 151, 161, 163, 166, 169, 179, 184, 187, 194, 205, 224, 236, 239, 254, 257, 265, 266, 268, 271, 274, 278, 281, 289, 293, 296, 304, 313, 316, 326, 334, 341, 346, 350, 355, 359, 364, 367, 376, 389, 391
Offset: 1

Author

W. Neville Holmes, Jul 14 2007

Keywords

Comments

This is A130699 with the trivial multiples of 3 removed.

Examples

			26 because 2*26+3=55 is not a prime, nor is 2*26-3=49.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],!Divisible[#,3]&&NoneTrue[2#+{3,-3},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2018 *)
  • PARI
    isok(n) = (n % 3) && !isprime(2*n-3) && !isprime(2*n+3) \\ Michel Marcus, Jul 11 2013

Extensions

Missing term 169 added by Michel Marcus, Jul 11 2013

A130723 Least common multiple of 3 and n^2+n+1.

Original entry on oeis.org

3, 3, 21, 39, 21, 93, 129, 57, 219, 273, 111, 399, 471, 183, 633, 723, 273, 921, 1029, 381, 1263, 1389, 507, 1659, 1803, 651, 2109, 2271, 813, 2613, 2793, 993, 3171, 3369, 1191, 3783, 3999, 1407, 4449, 4683, 1641, 5169, 5421, 1893, 5943, 6213, 2163, 6771
Offset: 0

Author

W. Neville Holmes, Jul 04 2007

Keywords

Crossrefs

Cf. A109044.

Programs

  • Mathematica
    Table[LCM[3,n^2+n+1],{n,0,60}] (* Harvey P. Dale, Mar 03 2017 *)
  • PARI
    a(n) = lcm(3, n^2+n+1) \\ Michel Marcus, Jul 11 2013
    
  • PARI
    Vec(3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^100)) \\ Colin Barker, Mar 08 2017

Formula

From Colin Barker, Mar 08 2017: (Start)
G.f.: 3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>8.
(End)

Extensions

Corrected by Harvey P. Dale, Mar 03 2017

A130770 One third of the least common multiple of 3 and n^2+n+1.

Original entry on oeis.org

1, 1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919
Offset: 0

Author

W. Neville Holmes, Jul 14 2007

Keywords

Comments

This is a subset of A051176 and is also one third of A130723.

Examples

			a(4)=7 because 4^2+4+1 =21, the LCM of 3 and 21 is 21 and 21/3=7.
		

Crossrefs

Programs

  • Magma
    [Lcm(3,n^2+n+1)/3: n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    seq(denom((n-1)^2/(n^2+n+1)), n=0..52) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[LCM[3,n^2+n+1]/3,{n,0,60}] (* or *) LinearRecurrence[ {0,0,3,0,0,-3,0,0,1},{1,1,7,13,7,31,43,19,73},60] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    for(n=0,50, print1(lcm(3, n^2 + n +1)/3, ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

Conjecture: a(n) = A046163(n), n>0. - R. J. Mathar, Jun 13 2008
a(n) = 3*a(n-3)-3*a(n-6)+a(n-9), with a(0)=1, a(1)=1, a(2)=7, a(3)=13, a(4)=7, a(5)=31, a(6)=43, a(7)=19, a(8)=73. - Harvey P. Dale, Apr 10 2014

A130724 a(n) = lcm(n,3) / gcd(n,3).

Original entry on oeis.org

0, 3, 6, 1, 12, 15, 2, 21, 24, 3, 30, 33, 4, 39, 42, 5, 48, 51, 6, 57, 60, 7, 66, 69, 8, 75, 78, 9, 84, 87, 10, 93, 96, 11, 102, 105, 12, 111, 114, 13, 120, 123, 14, 129, 132, 15, 138, 141, 16, 147, 150, 17, 156, 159, 18, 165, 168, 19, 174, 177, 20, 183, 186
Offset: 0

Author

W. Neville Holmes, Jul 04 2007

Keywords

Examples

			a(7) = 21 because lcm(3,7) = 21, gcd(3,7) = 1 and 21/1 = 21.
		

Crossrefs

Programs

Formula

a(n) = A109044(n) / A109007(n).
From Wesley Ivan Hurt, Jul 24 2016: (Start)
G.f.: x*(3 + 6*x + x^2 + 6*x^3 + 3*x^4)/(x^3 - 1)^2.
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 27*n/(5 + 4*cos(2*n*Pi/3))^2.
If n mod 3 = 0, then n/3, else 3*n.
a(n) = lcm(numerator(n/3), denominator(n/3)). (End)
Sum_{k=1..n} a(k) ~ (19/18)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

Corrected and extended by Harvey P. Dale, May 16 2013

A102770 (p*q - 1)/2 where p and q are consecutive odd primes.

Original entry on oeis.org

7, 17, 38, 71, 110, 161, 218, 333, 449, 573, 758, 881, 1010, 1245, 1563, 1799, 2043, 2378, 2591, 2883, 3278, 3693, 4316, 4898, 5201, 5510, 5831, 6158, 7175, 8318, 8973, 9521, 10355, 11249, 11853, 12795, 13610, 14445, 15483, 16199, 17285, 18431, 19010
Offset: 1

Author

W. Neville Holmes, Feb 10 2005

Keywords

Comments

Primes in this sequence: 7, 17, 71, 449, 881, 2591, ... - Zak Seidov, Jan 14 2013

Examples

			a(1) = (3*5 - 1)/2 = 7.
a(2) = (5*7 - 1)/2 = 17.
a(3) = (7*11 - 1)/2 = 38.
		

Crossrefs

Programs

Formula

a(n) = (prime(n + 1)*prime(n + 2) - 1)/2.
a(n) ~ 0.5 n^2/log^2 n. - Charles R Greathouse IV, Jan 14 2013
a(n) = A023515(n+2)/2. - Jason Kimberley, Oct 23 2015

A096005 For k >= 1, let b(k) = ceiling( Sum_{i=1..k} 1/i ); a(n) = number of b(k) that are equal to n.

Original entry on oeis.org

0, 1, 2, 7, 20, 52, 144, 389, 1058, 2876, 7817, 21250, 57763, 157017, 426817, 1160207, 3153770, 8572836, 23303385, 63345169, 172190019, 468061001, 1272321714, 3458528995, 9401256521, 25555264765, 69466411833, 188829284972
Offset: 0

Author

W. Neville Holmes, Jul 29 2004

Keywords

Examples

			The ceilings of the first several partial sums of the reciprocal of the positive integers are 1 2 2 3 3 3 3 3 3 3 4 4 and the series is monotonically increasing, so a(0) = 0 (there being no zero), a(1) = 1 (there being but one 1) and a(3) = 7 (there being seven 3s).
		

Crossrefs

Programs

  • C
    int A096005(int k)
    {    if(k<3) return k;
        double sum = 0, n = 1; int ceiling = 2, cnt = 0;
        for(;;) {
            sum += 1/n++;
            if(sum < ceiling) { cnt++; continue; }
            if(ceiling++ == k) return cnt; else cnt = 1; }
    } /* Oskar Wieland, May 01 2014 */
  • Mathematica
    fh[0] = 0; fh[1] = 1; fh[k_] := Module[{tmp}, If[ Floor[tmp = Log[k + 1/2] + EulerGamma] == Floor[tmp + 1/(24k^2)], Floor[tmp], UNKNOWN]]; a[0] = 1; a[1] = 2; a[n_] := Module[{val}, val = Round[Exp[n - EulerGamma]]; If[fh[val] == n && fh[val - 1] == n - 1, val, UNKNOWN]]; Table[ a[n + 1] - a[n], {n, 0, 27}] (* Robert G. Wilson v, Aug 05 2004 *)

Formula

a(n+1)/a(n) approaches e = exp(1) = 2.71828...
First differences of A002387. - Vladeta Jovovic, Jul 30 2004

Extensions

More terms from Robert G. Wilson v, Aug 05 2004

A096143 a(n) = ceiling(Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Author

W. Neville Holmes, Jul 24 2004

Keywords

Examples

			a(4)=3 because the ceiling of 1 + 1/2 + 1/3 + 1/4 is 3.
		

Crossrefs

Programs

  • Mathematica
    Ceiling[HarmonicNumber[Range[110]]] (* Harvey P. Dale, Aug 27 2014 *)
  • PARI
    a(n) = ceil(sum(i=1, n, 1/i)) \\ Michel Marcus, Jul 11 2013

Formula

a(n) = ceiling(A001008(n)/A002805(n)). - Michel Marcus, Jul 11 2013

A074375 s(s+3)/2 where s is the sum of the prime factors of n (with repetition).

Original entry on oeis.org

0, 5, 9, 14, 20, 20, 35, 27, 27, 35, 77, 35, 104, 54, 44, 44, 170, 44, 209, 54, 65, 104, 299, 54, 65, 135, 54, 77, 464, 65, 527, 65, 119, 209, 90, 65, 740, 252, 152, 77, 902, 90, 989, 135, 77, 350, 1175, 77, 119, 90, 230, 170, 1484, 77, 152, 104, 275, 527, 1829, 90
Offset: 1

Author

W. Neville Holmes, Aug 29 2002

Keywords

Examples

			a(20) = 9(9+3)/2 = 54 because 9 = 2+2+5 and 20 = 2*2*5.
		

Crossrefs

Applies A000096 to A001414. Cf. A074373, A074374.

Programs

  • Mathematica
    spf[n_]:=Module[{c=Total[Times@@@FactorInteger[n]]},(c(c+3))/2]; Join[ {0}, Rest[Array[spf,60]]] (* Harvey P. Dale, Aug 16 2011 *)

A074373 Square of the sum of the prime factors of n (with repetition).

Original entry on oeis.org

0, 4, 9, 16, 25, 25, 49, 36, 36, 49, 121, 49, 169, 81, 64, 64, 289, 64, 361, 81, 100, 169, 529, 81, 100, 225, 81, 121, 841, 100, 961, 100, 196, 361, 144, 100, 1369, 441, 256, 121, 1681, 144, 1849, 225, 121, 625, 2209, 121, 196, 144, 400, 289, 2809, 121, 256
Offset: 1

Author

W. Neville Holmes, Aug 28 2002

Keywords

Examples

			a(12)=49 because 12=2*2*3, 2+2+3=7 and 7^2 = 49.
		

Crossrefs

Equals A001414^2.

Programs

  • Mathematica
    sspf[n_]:=Total[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[ n]]]^2; Join[{0},Array[sspf,60,2]] (* Harvey P. Dale, Sep 24 2012 *)