cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A158622 Numerator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919, 2863
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...
Is this the same as A046163? - R. J. Mathar, Mar 27 2009
Apparently a(n) = A130770(n) for 2 <= n <= 53. - Georg Fischer, Oct 24 2018

Examples

			a(2) = 7 = numerator of (2^3-1)/2^3+1 = 7/9.
a(3) = 13 = numerator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18.
a(4) = 7 = = numerator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10.
a(5) = 31 = numerator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

  • Maple
    A158622 := proc(n) 2*(n^2+n+1)/3/n/(n+1) ; numer(%) ; end: seq(A158622(n),n=2..100) ; # R. J. Mathar, Mar 27 2009
  • Mathematica
    Table[Product[k^3-1,{k,2,n}]/Product[k^3+1,{k,2,n}],{n,2,60}]//Numerator (* Harvey P. Dale, Feb 26 2020 *)

Formula

Numerator of (Product_{k=2..n} (k^3-1))/Product_{k=2..n} (k^3+1) = numerator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 + x^7 + x^6 - 2*x^5 + 4*x^4 + 10*x^3 + 7*x^2 + 13*x + 7) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009
Showing 1-1 of 1 results.