A331030 Divide the terms of the harmonic series into groups sequentially so that the sum of each group is minimally greater than 1. a(n) is the number of terms in the n-th group.
2, 5, 13, 36, 98, 266, 723, 1965, 5342, 14521, 39472, 107296, 291661, 792817, 2155100, 5858169, 15924154, 43286339, 117664468, 319845186, 869429357, 2363354022, 6424262292, 17462955450, 47469234471, 129034757473, 350752836478, 953445061679, 2591732385596
Offset: 1
Keywords
Examples
a(1)=2 because 1 + 1/2 = 1.5 > 1, a(2)=5 because 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 1.0928... > 1, etc.
Programs
-
PARI
lista(lim=oo)={my(s=0, p=0); for(i=1, lim, s+=1/i; if(s>1, print1(i-p, ", "); s=0; p=i))} \\ Andrew Howroyd, Jan 08 2020
-
Python
x = 0.0 y = 0.0 z = 0.0 for i in range(1,100000000000000000000000): y += 1 x = x + 1/i z = z + 1/i if x > 1: print(y) y = 0 x = 0
Formula
a(1)=2, a(n) = (min(p) : Sum_{s=r..p} 1/s > 1)-r+1, r=Sum_{k=1..n-1} a(k).
Extensions
a(25)-a(29) from Jon E. Schoenfield, Jan 10 2020
Comments