cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alejandro Argüelles Trujillo

Alejandro Argüelles Trujillo's wiki page.

Alejandro Argüelles Trujillo has authored 2 sequences.

A331028 Partition the terms of the harmonic series into groups sequentially so that the sum of each group is equal to or minimally greater than 1; then a(n) is the number of terms in the n-th group.

Original entry on oeis.org

1, 3, 8, 22, 60, 163, 443, 1204, 3273, 8897, 24184, 65739, 178698, 485751, 1320408, 3589241, 9756569, 26521104, 72091835, 195965925, 532690613, 1448003214, 3936080824, 10699376979, 29083922018, 79058296722, 214902731368, 584166189564, 1587928337892, 4316436745787
Offset: 1

Keywords

Comments

a(n) is equal to A024581(n) through a(10), and grows very similarly for n > 10.
Let b(n) = Sum_{j=1..n} a(n); then for n >= 2 it appears that b(n) = round((b(n-1) + 1/2)*e). Cf. A331030. - Jon E. Schoenfield, Jan 14 2020

Examples

			a(1)=1 because 1 >= 1,
a(2)=3 because 1/2 + 1/3 + 1/4 = 1.0833... >= 1, etc.
		

Crossrefs

Some sequences in the same spirit as this: A002387, A004080, A055980, A115515.

Programs

  • PARI
    default(realprecision, 10^5); e=exp(1);
    lista(nn) = {my(r=1); print1(r); for(n=2, nn, print1(", ", -r+(r=floor(e*r+(e+1)/2+(e-1/e)/(24*(r+1/2)))))); } \\ Jinyuan Wang, Mar 31 2020
  • Python
    x = 0.0
    y = 0.0
    for i in range(1,100000000000000000000000):
      y += 1
      x = x + 1/i
      if x >= 1:
        print(y)
        y = 0
        x = 0
    

Formula

a(n) = min(p): Sum_{b=r+1..p+r} 1/b >= 1, r = Sum_{k=1..n-1} a(k), a(1) = 1.

Extensions

a(20)-a(21) from Giovanni Resta, Jan 14 2020
More terms from Jinyuan Wang, Mar 31 2020

A331030 Divide the terms of the harmonic series into groups sequentially so that the sum of each group is minimally greater than 1. a(n) is the number of terms in the n-th group.

Original entry on oeis.org

2, 5, 13, 36, 98, 266, 723, 1965, 5342, 14521, 39472, 107296, 291661, 792817, 2155100, 5858169, 15924154, 43286339, 117664468, 319845186, 869429357, 2363354022, 6424262292, 17462955450, 47469234471, 129034757473, 350752836478, 953445061679, 2591732385596
Offset: 1

Keywords

Comments

a(n) = A046171(n+1) through a(5), and grows similarly for n > 5.
Let b(n) = Sum_{j=1..n} a(n); then for n >= 2 it appears that b(n) = round((b(n-1) + 1/2)*e). Verified through n = 10000 (using the approximation Sum_{j=1..k} 1/j = log(k) + gamma + 1/(2*k) - 1/(12*k^2) + 1/(120*k^4) - 1/(252*k^6) + 1/(240*k^8) - ..., where gamma is the Euler-Mascheroni constant, A001620). Cf. A081881. - Jon E. Schoenfield, Jan 10 2020

Examples

			a(1)=2 because 1 + 1/2 = 1.5 > 1,
a(2)=5 because 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 1.0928... > 1,
etc.
		

Programs

  • PARI
    lista(lim=oo)={my(s=0, p=0); for(i=1, lim, s+=1/i; if(s>1, print1(i-p, ", "); s=0; p=i))} \\ Andrew Howroyd, Jan 08 2020
  • Python
    x = 0.0
    y = 0.0
    z = 0.0
    for i in range(1,100000000000000000000000):
      y += 1
      x = x + 1/i
      z = z + 1/i
      if x > 1:
        print(y)
        y = 0
        x = 0
    

Formula

a(1)=2, a(n) = (min(p) : Sum_{s=r..p} 1/s > 1)-r+1, r=Sum_{k=1..n-1} a(k).

Extensions

a(25)-a(29) from Jon E. Schoenfield, Jan 10 2020