Original entry on oeis.org
1, 2, 6, 16, 43, 117, 318, 865, 2351, 6391, 17372, 47222, 128363, 348927, 948482, 2578241, 7008386, 19050768, 51785356, 140767193, 382644902, 1040136684, 2827384648, 7685628310, 20891703776, 56789538739, 154369971201, 419621087576, 1140648377196, 3100603756393
Offset: 1
From _Pablo Hueso Merino_, Feb 16 2020: (Start)
a(1) = 1 because 1 <= 1, 1 is one term (if you added 1/2 the sum would be greater than 1).
a(2) = 2 because 1/2 + 1/3 = 0.8333... <= 1, 1/2 and 1/3 are two terms (if you added 1/4 the sum would be greater than one).
a(3) = 6 because 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 = 0.9956... <= 1, it is a sum of six terms. (End)
-
a[1]=1;
a[n_]:= a[n]= Module[{sum = 0}, r = 1 + Sum[a[k], {k, n-1}];
x = r;
While[sum <= 1, sum += 1/x++];
p = x-2;
p -r +1];
Table[a[n], {n, 10}] (* Pablo Hueso Merino, Feb 16 2020 *)
A331030
Divide the terms of the harmonic series into groups sequentially so that the sum of each group is minimally greater than 1. a(n) is the number of terms in the n-th group.
Original entry on oeis.org
2, 5, 13, 36, 98, 266, 723, 1965, 5342, 14521, 39472, 107296, 291661, 792817, 2155100, 5858169, 15924154, 43286339, 117664468, 319845186, 869429357, 2363354022, 6424262292, 17462955450, 47469234471, 129034757473, 350752836478, 953445061679, 2591732385596
Offset: 1
a(1)=2 because 1 + 1/2 = 1.5 > 1,
a(2)=5 because 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 1.0928... > 1,
etc.
-
lista(lim=oo)={my(s=0, p=0); for(i=1, lim, s+=1/i; if(s>1, print1(i-p, ", "); s=0; p=i))} \\ Andrew Howroyd, Jan 08 2020
-
x = 0.0
y = 0.0
z = 0.0
for i in range(1,100000000000000000000000):
y += 1
x = x + 1/i
z = z + 1/i
if x > 1:
print(y)
y = 0
x = 0
A339061
Least integer j such that H(k+j)>=n+1, where k is the least integer to satisfy H(k)>=n, and H(k) is the sum of the first k terms of the harmonic series.
Original entry on oeis.org
1, 3, 7, 20, 52, 144, 389, 1058, 2876, 7817, 21250, 57763, 157017, 426817, 1160207, 3153770, 8572836, 23303385, 63345169, 172190019, 468061001, 1272321714, 3458528995, 9401256521, 25555264765, 69466411833, 188829284972, 513291214021
Offset: 0
Define H(0)=0, H(k) = Sum_{i=1..k} 1/i for k=1,2,3,...
a(0)=1: To reach n+1 from n=0 requires 1 additional term of the harmonic partial sum: H(0+1) = H(0) + 1/1 = H(1) = 1.
a(1)=3: To reach n+1 from n=1 requires 3 additional terms of the harmonic partial sum: H(1+3) = H(1) + 1/(1+1) + 1/(1+2) + 1/(1+3) = H(4) = 2.08333....
a(2)=7: To reach n+1 from n=2 requires 7 additional terms of the harmonic partial sum: H(4+7) = H(4) + 1/(4+1) + 1/(4+2) + ... + 1/(4+6) + 1/(4+7) = H(11) = 3.01987....
a(3)=20: To reach n+1 from n=3 requires 20 additional terms of the harmonic partial sum: H(11+20) = H(11) + 1/(11+1) + 1/(11+2) + ... + 1/(11+19) + 1/(11+20) = H(31) = 4.02724....
Showing 1-3 of 3 results.
Comments