cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081881 Pack bins of size 1 sequentially with items of size 1/1, 1/2, 1/3, 1/4, ... . Sequence gives values of n for which 1/n starts a new bin.

Original entry on oeis.org

1, 2, 4, 10, 26, 69, 186, 504, 1369, 3720, 10111, 27483, 74705, 203068, 551995, 1500477, 4078718, 11087104, 30137872, 81923228, 222690421, 605335323, 1645472007, 4472856655, 12158484965, 33050188741, 89839727480, 244209698681, 663830786257, 1804479163453, 4905082919846
Offset: 1

Views

Author

Wouter Meeussen, Apr 13 2003

Keywords

Comments

For n >= 3, it appears that a(n) = round((a(n-1) - 1/2)*e). Verified through n = 10000 (using the approximation Sum_{j=1..k} 1/j = log(k) + gamma + 1/(2*k) - 1/(12*k^2) + 1/(120*k^4) - 1/(252*k^6) + 1/(240*k^8) - ... + 7709321041217/(16320*k^32), where gamma is the Euler-Mascheroni constant, A001620). - Jon E. Schoenfield, Mar 30 2018

Examples

			1/1; 1/2+1/3, 1/4+1/5+1/6+1/7+1/8+1/9 are all just less than or equal to 1; so first four terms are 1, 2, 4, 10.
Lower and upper indices of bin contents are {1,1}, {2,3}, {4,9}, {10,25}, {26,68}, {69,185}, {186,503}, {504,1368}, {1369,3719}, {3720,10110}, {10111,27482}, ...
		

Crossrefs

Programs

  • Mathematica
    res ={}; FoldList[If[ #1+#2 > 1, AppendTo[res, #2];#2, #1+#2]&, 0, Table[1/k, {k, 1, 1000}]]; 1/res
    lst = {1, 2}; n = 2; Do[s = 0; While[s = N[s + 1/n, 64]; s < 1, n++ ]; AppendTo[lst, n]; Print@n, {i, 25}]; lst (* Robert G. Wilson v, Aug 19 2008 *)
  • PARI
    default(realprecision, 10^4); e=exp(1);
    A136616(k) = floor(e*k + (e-1)/2 + (e-1/e)/(24*k+12));
    lista(nn) = {my(k=1); print1(k); for(n=2, nn, k=A136616(k-1)+1; print1(", ", k)); } \\ Jinyuan Wang, Feb 20 2020

Formula

a(n) is asymptotic to C*exp(n) where C=0.1688... - Benoit Cloitre, Apr 14 2003
C = 0.16885635666714420373167977550090103410150395689764... (cf. A300897). - Jon E. Schoenfield, Apr 12 2018
a(n) = 1 + (A136616^(n-1))(0), where (f^0)(x)=x, (f^(n+1))(x) = f((f^n)(x)) for any function f. - Rainer Rosenthal, Feb 16 2008, Apr 05 2020

Extensions

a(13)-a(25) from Robert G. Wilson v, Aug 19 2008
More terms from Jinyuan Wang, Feb 20 2020

A295571 a(n) = A081881(n) - 1.

Original entry on oeis.org

0, 1, 3, 9, 25, 68, 185, 503, 1368, 3719, 10110, 27482, 74704, 203067, 551994, 1500476, 4078717, 11087103, 30137871, 81923227, 222690420, 605335322, 1645472006, 4472856654, 12158484964, 33050188740, 89839727479, 244209698680, 663830786256, 1804479163452, 4905082919845
Offset: 1

Views

Author

N. J. A. Sloane, Nov 30 2017

Keywords

Comments

The blocks of fractions described in A081881 extend from 1/A081881(k) through 1/a(k+1) and contain A295572(k) terms. For example the third block is 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/6 and has length 6.

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 20 2020

A300897 Decimal expansion of lim_{n->infinity} A081881(n)/exp(n).

Original entry on oeis.org

1, 6, 8, 8, 5, 6, 3, 5, 6, 6, 6, 7, 1, 4, 4, 2, 0, 3, 7, 3, 1, 6, 7, 9, 7, 7, 5, 5, 0, 0, 9, 0, 1, 0, 3, 4, 1, 0, 1, 5, 0, 3, 9, 5, 6, 8, 9, 7, 6, 4, 9, 2, 2, 2, 3, 7, 7, 2, 2, 5, 5, 2, 2, 7, 1, 4, 1, 7, 5, 3, 3, 0, 3, 0, 3, 3, 0, 1, 2, 8, 7, 7, 6, 7, 1, 0, 7
Offset: 0

Views

Author

Jon E. Schoenfield, Apr 12 2018

Keywords

Examples

			0.16885635666714420373167977550090103410150395689764...
		

Crossrefs

A331030 Divide the terms of the harmonic series into groups sequentially so that the sum of each group is minimally greater than 1. a(n) is the number of terms in the n-th group.

Original entry on oeis.org

2, 5, 13, 36, 98, 266, 723, 1965, 5342, 14521, 39472, 107296, 291661, 792817, 2155100, 5858169, 15924154, 43286339, 117664468, 319845186, 869429357, 2363354022, 6424262292, 17462955450, 47469234471, 129034757473, 350752836478, 953445061679, 2591732385596
Offset: 1

Views

Author

Keywords

Comments

a(n) = A046171(n+1) through a(5), and grows similarly for n > 5.
Let b(n) = Sum_{j=1..n} a(n); then for n >= 2 it appears that b(n) = round((b(n-1) + 1/2)*e). Verified through n = 10000 (using the approximation Sum_{j=1..k} 1/j = log(k) + gamma + 1/(2*k) - 1/(12*k^2) + 1/(120*k^4) - 1/(252*k^6) + 1/(240*k^8) - ..., where gamma is the Euler-Mascheroni constant, A001620). Cf. A081881. - Jon E. Schoenfield, Jan 10 2020

Examples

			a(1)=2 because 1 + 1/2 = 1.5 > 1,
a(2)=5 because 1/3 + 1/4 + 1/5 + 1/6 + 1/7 = 1.0928... > 1,
etc.
		

Crossrefs

Programs

  • PARI
    lista(lim=oo)={my(s=0, p=0); for(i=1, lim, s+=1/i; if(s>1, print1(i-p, ", "); s=0; p=i))} \\ Andrew Howroyd, Jan 08 2020
  • Python
    x = 0.0
    y = 0.0
    z = 0.0
    for i in range(1,100000000000000000000000):
      y += 1
      x = x + 1/i
      z = z + 1/i
      if x > 1:
        print(y)
        y = 0
        x = 0
    

Formula

a(1)=2, a(n) = (min(p) : Sum_{s=r..p} 1/s > 1)-r+1, r=Sum_{k=1..n-1} a(k).

Extensions

a(25)-a(29) from Jon E. Schoenfield, Jan 10 2020
Showing 1-4 of 4 results.