A295572 First differences of A081881.
1, 2, 6, 16, 43, 117, 318, 865, 2351, 6391, 17372, 47222, 128363, 348927, 948482, 2578241, 7008386, 19050768, 51785356, 140767193, 382644902, 1040136684, 2827384648, 7685628310, 20891703776, 56789538739, 154369971201, 419621087576, 1140648377196, 3100603756393
Offset: 1
Keywords
Examples
From _Pablo Hueso Merino_, Feb 16 2020: (Start) a(1) = 1 because 1 <= 1, 1 is one term (if you added 1/2 the sum would be greater than 1). a(2) = 2 because 1/2 + 1/3 = 0.8333... <= 1, 1/2 and 1/3 are two terms (if you added 1/4 the sum would be greater than one). a(3) = 6 because 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 = 0.9956... <= 1, it is a sum of six terms. (End)
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1]=1; a[n_]:= a[n]= Module[{sum = 0}, r = 1 + Sum[a[k], {k, n-1}]; x = r; While[sum <= 1, sum += 1/x++]; p = x-2; p -r +1]; Table[a[n], {n, 10}] (* Pablo Hueso Merino, Feb 16 2020 *)
Formula
a(1) = 1, a(n) = (max(m) : Sum_{s=r..m} 1/s <= 1)-r+1, r = Sum_{k=1..n-1} a(k). - Pablo Hueso Merino, Feb 16 2020
a(n) ~ c * exp(n), where c = (exp(1)-1) * A300897 = 0.290142809280953235916025... - Vaclav Kotesovec, Apr 05 2020
Extensions
More terms from Jinyuan Wang, Feb 20 2020
Comments