cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362584 Integers k > 1 such that k >= the square of the sum of their prime factors (A074373(k)).

Original entry on oeis.org

243, 256, 270, 288, 300, 320, 324, 336, 360, 375, 378, 384, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 495, 500, 504, 512, 525, 528, 540, 550, 560, 567, 576, 585, 588, 594, 600, 616, 624, 625, 630, 640, 648, 650, 660, 672, 675, 686, 693, 700, 702, 704
Offset: 1

Views

Author

Simon R Blow, Jun 23 2023

Keywords

Examples

			243 >= A001414(243)^2 = (3+3+3+3+3=15)^2 = 225 so 243 is a term.
800 >= A001414(800)^2 = (2+2+2+2+2+5+5=20)^2 = 400 so 800 is a term.
		

Crossrefs

Programs

  • Maple
    q:= n-> n>=add(i[1]*i[2], i=ifactors(n)[2])^2:
    select(q, [$2..800])[];  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    Select[Range[2, 700], # >= (Plus @@ Times @@@ FactorInteger[#])^2 &] (* Amiram Eldar, Jun 24 2023 *)
  • PARI
    isok(n) = ((p=factor(n))[, 1]~*p[, 2])^2 <= n \\ Thomas Scheuerle, Jun 23 2023

A074375 s(s+3)/2 where s is the sum of the prime factors of n (with repetition).

Original entry on oeis.org

0, 5, 9, 14, 20, 20, 35, 27, 27, 35, 77, 35, 104, 54, 44, 44, 170, 44, 209, 54, 65, 104, 299, 54, 65, 135, 54, 77, 464, 65, 527, 65, 119, 209, 90, 65, 740, 252, 152, 77, 902, 90, 989, 135, 77, 350, 1175, 77, 119, 90, 230, 170, 1484, 77, 152, 104, 275, 527, 1829, 90
Offset: 1

Views

Author

W. Neville Holmes, Aug 29 2002

Keywords

Examples

			a(20) = 9(9+3)/2 = 54 because 9 = 2+2+5 and 20 = 2*2*5.
		

Crossrefs

Applies A000096 to A001414. Cf. A074373, A074374.

Programs

  • Mathematica
    spf[n_]:=Module[{c=Total[Times@@@FactorInteger[n]]},(c(c+3))/2]; Join[ {0}, Rest[Array[spf,60]]] (* Harvey P. Dale, Aug 16 2011 *)

A074376 s(3s-1)/2 where s is the sum of the prime factors of n (with repetition).

Original entry on oeis.org

0, 5, 12, 22, 35, 35, 70, 51, 51, 70, 176, 70, 247, 117, 92, 92, 425, 92, 532, 117, 145, 247, 782, 117, 145, 330, 117, 176, 1247, 145, 1426, 145, 287, 532, 210, 145, 2035, 651, 376, 176, 2501, 210, 2752, 330, 176, 925, 3290, 176, 287, 210, 590, 425, 4187
Offset: 1

Views

Author

W. Neville Holmes, Aug 29 2002

Keywords

Examples

			a(20) = 9(3*9-1)/2 = 117 because 9 = 2+2+5 and 20 = 2*2*5.
		

Crossrefs

Programs

  • Mathematica
    spf[n_]:=Module[{t=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[ n]]]},(t(3t-1))/2]; Join[{0},Array[spf,60,2]] (* Harvey P. Dale, Sep 23 2016 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2])
    fn(n) = my(s=sopfr(n)); s*(3*s-1)/2 \\ Michel Marcus, Jul 11 2013

A255384 a(n) = sopfr(n)^2 - 2n, where sopfr(n) is the sum of the prime factors of n with multiplicity.

Original entry on oeis.org

-2, 0, 3, 8, 15, 13, 35, 20, 18, 29, 99, 25, 143, 53, 34, 32, 255, 28, 323, 41, 58, 125, 483, 33, 50, 173, 27, 65, 783, 40, 899, 36, 130, 293, 74, 28, 1295, 365, 178, 41, 1599, 60, 1763, 137, 31, 533, 2115, 25, 98, 44, 298, 185, 2703, 13, 146, 57, 370, 845
Offset: 1

Views

Author

Wesley Ivan Hurt, May 05 2015

Keywords

Comments

If n is prime, then a(n) = n*(n-2). If n is semiprime, then a(n) gives the sum of the squares of the prime factors of n (with multiplicity).
a(n) is negative for n = 1, 81, 90, 96, 100, 108, 120, 125, 126, 128, 135, .... - Charles R Greathouse IV, May 06 2015

Examples

			a(6) = sopfr(6)^2 - 2(6) = (2+3)^2 - 12 = 25 - 12 = 13.
a(8) = sopfr(8)^2 - 2(8) = (2+2+2)^2 - 16 = 36 - 16 = 20.
		

Crossrefs

Cf. A074373 (sopfr^2), A001414 (sopfr).

Programs

  • Mathematica
    sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; f[1] = 0; Table[sopfr[n]^2 - 2 n, {n, 100}]
  • PARI
    sopfr(n)=my(f=factor(n)); sum(i=1,#f~, f[i,1]*f[i,2])
    a(n)=sopfr(n)^2 - 2*n \\ Charles R Greathouse IV, May 06 2015

Formula

a(n) = A074373(n) - A005843(n).
Showing 1-4 of 4 results.