A362584 Integers k > 1 such that k >= the square of the sum of their prime factors (A074373(k)).
243, 256, 270, 288, 300, 320, 324, 336, 360, 375, 378, 384, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 495, 500, 504, 512, 525, 528, 540, 550, 560, 567, 576, 585, 588, 594, 600, 616, 624, 625, 630, 640, 648, 650, 660, 672, 675, 686, 693, 700, 702, 704
Offset: 1
Keywords
Examples
243 >= A001414(243)^2 = (3+3+3+3+3=15)^2 = 225 so 243 is a term. 800 >= A001414(800)^2 = (2+2+2+2+2+5+5=20)^2 = 400 so 800 is a term.
Links
- Simon R Blow, Table of n, a(n) for n = 1..5000
Programs
-
Maple
q:= n-> n>=add(i[1]*i[2], i=ifactors(n)[2])^2: select(q, [$2..800])[]; # Alois P. Heinz, Jun 23 2023
-
Mathematica
Select[Range[2, 700], # >= (Plus @@ Times @@@ FactorInteger[#])^2 &] (* Amiram Eldar, Jun 24 2023 *)
-
PARI
isok(n) = ((p=factor(n))[, 1]~*p[, 2])^2 <= n \\ Thomas Scheuerle, Jun 23 2023
Comments