Eduard I. Vatutin has authored 114 sequences. Here are the ten most recent ones:
A387360
Maximum number of diagonal transversals in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 27, 96, 333, 152
Offset: 1
A387236
Minimum number of diagonal transversals in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 8, 16, 15, 75
Offset: 1
A387187
a(n) is the number of distinct numbers of transversals an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 4, 5, 244, 62
Offset: 1
For n=8 the number of transversals that an extended self-orthogonal diagonal Latin square of order 7 may have is 128, 192, 224, 256, or 384. Since there are 3 distinct values, a(8)=5.
A387124
Maximum number of transversals in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 8, 15, 0, 133, 384, 2241, 988
Offset: 1
A383570
Number of transversals in pine Latin squares of order 4n.
Original entry on oeis.org
8, 384, 76032, 62881792
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
has 384 transversals.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
has no transversals.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
has 76032 transversals.
A383684
Minimum number of transversals in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 8, 15, 0, 23, 128, 133, 716
Offset: 1
A383368
Number of intercalates in pine Latin squares of order 2n.
Original entry on oeis.org
1, 12, 27, 80, 125, 252, 343, 576, 729, 1100, 1331, 1872, 2197, 2940, 3375, 4352, 4913, 6156, 6859, 8400, 9261, 11132, 12167, 14400, 15625
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
have 80 intercalates.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
have 125 intercalates.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
have 252 intercalates.
A382957
a(n) is the number of distinct numbers of intercalates in an extended self-orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 3, 8, 52, 45
Offset: 1
For n=7 the number of intercalates that an extended self-orthogonal diagonal Latin square of order 7 may have is 0, 10, or 18. Since there are 3 distinct values, a(7)=3.
A382952
Maximum number of intercalates in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 0, 18, 112, 72, 53
Offset: 1
A382505
a(n) is the number of distinct numbers of diagonal transversals in Brown's diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 1, 2, 20, 349
Offset: 1
For n=4 the number of transversals that a diagonal Latin square of order 8 may have is 0, 8, 12, 16, 18, 20, 24, 26, 28, 32, 36, 40, 44, 48, 52, 56, 64, 88, 96, or 120. Since there are 20 distinct values, a(4)=20.
Comments