A383368 Number of intercalates in pine Latin squares of order 2n.
1, 12, 27, 80, 125, 252, 343, 576, 729, 1100, 1331, 1872, 2197, 2940, 3375, 4352, 4913, 6156, 6859, 8400, 9261, 11132, 12167, 14400, 15625
Offset: 1
Examples
For order N=8 pine Latin square 0 1 2 3 4 5 6 7 1 2 3 0 7 4 5 6 2 3 0 1 6 7 4 5 3 0 1 2 5 6 7 4 4 5 6 7 0 1 2 3 5 6 7 4 3 0 1 2 6 7 4 5 2 3 0 1 7 4 5 6 1 2 3 0 have 80 intercalates. . For order N=10 pine Latin square 0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 2 3 4 0 1 8 9 5 6 7 3 4 0 1 2 7 8 9 5 6 4 0 1 2 3 6 7 8 9 5 5 6 7 8 9 0 1 2 3 4 6 7 8 9 5 4 0 1 2 3 7 8 9 5 6 3 4 0 1 2 8 9 5 6 7 2 3 4 0 1 9 5 6 7 8 1 2 3 4 0 have 125 intercalates. . For order N=12 pine Latin square 0 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 0 11 6 7 8 9 10 2 3 4 5 0 1 10 11 6 7 8 9 3 4 5 0 1 2 9 10 11 6 7 8 4 5 0 1 2 3 8 9 10 11 6 7 5 0 1 2 3 4 7 8 9 10 11 6 6 7 8 9 10 11 0 1 2 3 4 5 7 8 9 10 11 6 5 0 1 2 3 4 8 9 10 11 6 7 4 5 0 1 2 3 9 10 11 6 7 8 3 4 5 0 1 2 10 11 6 7 8 9 2 3 4 5 0 1 11 6 7 8 9 10 1 2 3 4 5 0 have 252 intercalates.
Links
- R. Bean, Critical sets in Latin squares and associated structures, Ph.D. Thesis, The University of Queensland, 2001.
- Eduard I. Vatutin, About the properties of pine Latin squares (in Russian).
- Eduard I. Vatutin, Proving list (examples).
- Index entries for sequences related to Latin squares and rectangles.
Formula
Hypothesis: For all known pine Latin squares of orders N=4k+2 number of intercalates a(n) = a(N/2)= a(2k+1) = (N/2)^3 = (2k+1)^3 = A016755((n-1)/2) (verified for N<29).
Comments