cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A068466 Decimal expansion of Gamma(1/4).

Original entry on oeis.org

3, 6, 2, 5, 6, 0, 9, 9, 0, 8, 2, 2, 1, 9, 0, 8, 3, 1, 1, 9, 3, 0, 6, 8, 5, 1, 5, 5, 8, 6, 7, 6, 7, 2, 0, 0, 2, 9, 9, 5, 1, 6, 7, 6, 8, 2, 8, 8, 0, 0, 6, 5, 4, 6, 7, 4, 3, 3, 3, 7, 7, 9, 9, 9, 5, 6, 9, 9, 1, 9, 2, 4, 3, 5, 3, 8, 7, 2, 9, 1, 2, 1, 6, 1, 8, 3, 6, 0, 1, 3, 6, 7, 2, 3, 3, 8, 4, 3, 0, 0, 3, 6, 1, 4, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and e^Pi over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			3.6256099082219083119306851558676720029951676828800654674333...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:13 at page 414.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/4); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/4));
  • Mathematica
    RealDigits[Gamma[1/4], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
  • PARI
    default(realprecision, 1080); x=gamma(1/4); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b068466.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

From Amiram Eldar, Jun 12 2021: (Start)
Equals sqrt(2*sqrt(2*Pi^3)*G), where G is Gauss's constant (A014549).
Equals (2*Pi)^(3/4) * Product_{k>=1} tanh(k*Pi/2) (Duke and Imamoḡlu, 2006). (End)
Gamma(1/4) * A068465 = A063448. - R. J. Mathar, May 22 2024
Equals Product_{n>=1} exp((2*(6*n + 1)*(1 - beta(n)) - (eta(n) - 1))/(4*n)), where eta(n) and beta(n) are the Dirichlet eta and beta functions, respectively. - Antonio Graciá Llorente, Sep 05 2024

A093954 Decimal expansion of Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2004

Keywords

Comments

The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020

Examples

			1.11072073453959156175397...
From _Peter Bala_, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From _Peter Bala_, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 149.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 76, page 16.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 149.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.

Crossrefs

Programs

  • Maple
    simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) );  # Peter Bala, Mar 09 2015
  • Mathematica
    RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009

Formula

Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
From Stefano Spezia, Jun 05 2025: (Start)
Equals Sum_{k>=1} (-1)^(k+1)(1/(4*k - 3) + 1/(4*k - 1)).
Equals Product_{k=0..oo} (1 + (-1)^k/(2*k + 3)).
Equals Integral_{x=0..oo} 1/(2*x^2 + 1).
Equals Integral_{x=0..1} 1/((1 + x^2)*sqrt(1 - x^2)). (End)

A016838 a(n) = (4n + 3)^2.

Original entry on oeis.org

9, 49, 121, 225, 361, 529, 729, 961, 1225, 1521, 1849, 2209, 2601, 3025, 3481, 3969, 4489, 5041, 5625, 6241, 6889, 7569, 8281, 9025, 9801, 10609, 11449, 12321, 13225, 14161, 15129, 16129, 17161, 18225
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
A bisection of A016754. Sequence arises from reading the line from 9, in the direction 9, 49, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Using (n,n+1) to generate a Pythagorean triangle with sides of lengths xJ. M. Bergot, Jul 17 2013

Crossrefs

Programs

Formula

Denominators of first differences Zeta[2,(4n-1)/4]-Zeta[2,(4(n+1)-1)/4]. - Artur Jasinski, Mar 03 2010
From George F. Johnson, Oct 03 2012: (Start)
G.f.: (9+22*x+x^2)/(1-x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n)-16)^2; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n+1) = (A004767(n))^2.
(End)
Sum_{n>=0} 1/a(n) = Pi^2/16 - G/2, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=0} (1 - 1/a(n)) = Gamma(3/4)^2/sqrt(Pi) = A068465^2 * A087197. - Amiram Eldar, Feb 01 2021

A175573 Decimal expansion of Pi^(1/4)/Gamma(3/4).

Original entry on oeis.org

1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.

Examples

			1.0864348112133080145753161...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017
  • Maple
    Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)
  • PARI
    Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017
    
  • PARI
    2*suminf(k=0,exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018
    

Formula

Equals A092040 / A068465.
Equals Sum_{n=-oo..oo} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013
Equals sqrt(A175574). - Amiram Eldar, Jul 04 2023
Equals Gamma(1/4)/(sqrt(2)*Pi^(3/4)). - Vaclav Kotesovec, Jul 04 2023
Equals Product_{k>=1} tanh((1/2 + i/2)*Pi*k), i=sqrt(-1). - _Antonio Graciá Llorente, Mar 20 2024
Equals Product_{k>=0} (1/2)*(((k+1/2)/(k+1))^(1/2)+((k+1)/(k+1/2))^(1/2)). - Antonio Graciá Llorente, Jul 23 2024
Equals (1/A096427)^2 (see Spanier and Oldham at p. 258). - Stefano Spezia, Dec 31 2024
Equals 2*A319332 = 1/A327995. - Hugo Pfoertner, Dec 31 2024

A084254 Decimal expansion of Sum_{k>=1} 1/(k*(exp(2*Pi*k)-1)).

Original entry on oeis.org

0, 0, 1, 8, 7, 2, 6, 8, 2, 4, 4, 9, 7, 6, 8, 5, 4, 6, 1, 1, 5, 6, 3, 8, 5, 7, 9, 4, 7, 9, 9, 6, 1, 3, 9, 8, 8, 6, 9, 1, 6, 2, 8, 9, 5, 6, 5, 2, 6, 1, 9, 5, 6, 3, 8, 4, 1, 3, 3, 1, 5, 7, 4, 5, 3, 7, 8, 8, 4, 3, 1, 9, 5, 1, 7, 0, 9, 8, 0, 2, 2, 6, 7, 5, 1, 7, 0, 7, 2, 7, 8, 4, 0, 2, 4, 5, 6, 7, 9, 7, 9, 9, 8, 7
Offset: 0

Author

Benoit Cloitre, Jun 21 2003

Keywords

Examples

			0.00187268244976854611563857947996139886916289565261...
		

References

  • Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, 1989, pp. 280-281.

Crossrefs

Cf. A255695 (S(1,1)), A255697 (S(1,4)), A255698 (S(3,1)), A255699 (S(3,2)), A255700 (S(3,4)), A255701 (S(5,1)), A255702 (S(5,2)), A255703 (S(5,4)).

Programs

  • Mathematica
    digits = 104; S[1, 2] = NSum[1/(n*(Exp[2*Pi*n] - 1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> digits]; RealDigits[S[1, 2], 10, digits] // First (* Jean-François Alcover, Mar 02 2015 *)
    Join[{0,0},RealDigits[Log[4/Pi]/4 - Pi/12 + Log[Gamma[3/4]], 10, 100][[1]]] (* Amiram Eldar, May 21 2022 *)
  • PARI
    1/4*log(4/Pi)-Pi/12+log(gamma(3/4))

Formula

Equals log(4/Pi)/4 - Pi/12 + log(Gamma(3/4)).
From Jean-François Alcover, Mar 02 2015: (Start)
This is the case k=1, m=2 of the Plouffe sum S(k,m) = Sum_{n >= 1} 1/(n^k*(exp(m*Pi*n)-1)).
Pi = 72*S(1,1) - 96*S(1,2) + 24*S(1,4). (End)
Equals Sum_{k>=1} sigma(k)/(k*exp(2*Pi*k)). - Amiram Eldar, Jun 05 2023

A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3).

Original entry on oeis.org

1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9
Offset: 1

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's first triple integral.
This is also the value of F. Morley's series from 1902 Sum_{k=0..n} (risefac(k,1/2)/k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],1) with the rising factorial risefac(n,x). See A277232, also for the Hardy reference and a MathWorld link. - Wolfdieter Lang, Nov 11 2016
This constant is transcendental due to a result of Nesterenko, who proves that Gamma(1/4) is algebraically independent of Pi. - Charles R Greathouse IV, Aug 19 2025

Examples

			1.39320392968567685918424626032536824265748121751561787897...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 324.

Crossrefs

Programs

Formula

From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals the square of A175574. Equals A000796/A068465^4. - R. J. Mathar, Jun 17 2016
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0} binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020

A025749 4th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 6, 56, 616, 7392, 93632, 1230592, 16612992, 228890112, 3204461568, 45445091328, 651379642368, 9419951751168, 137262154088448, 2013178259963904, 29694379334467584, 440175505428578304, 6553724191936610304, 97960930026841964544, 1469413950402629468160
Offset: 0

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (4^(n-1)*Sum[ Binomial[n+k-1, n-1]*Sum[ Binomial[j, n-3*k+2*j-1] * 4^(j-k) * Binomial[k, j] * 3^(-n+3*k-j+1) * 2^(n-3*k+j-1) * (-1)^(n-3*k+2*j-1), {j, 0, k}], {k, 1, n-1}])/n; a[0] = a[1] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Mar 05 2013, after Vladimir Kruchinin *)
    a[n_] := 16^(n-1) * Pochhammer[3/4, n-1]/n!; a[0] = 1; Array[a, 21, 0] (* Amiram Eldar, Aug 20 2025 *)
  • Maxima
    a(n):=(4^(n-1)*sum(binomial(n+k-1,n-1)*sum(binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1),j,0,k),k,1,n-1))/n; /* Vladimir Kruchinin, Apr 01 2011 */

Formula

a(n) = 2^(n-1) * A048779(n), n > 1.
From Wolfdieter Lang: (Start)
G.f.: (5-(1-16*x)^(1/4))/4.
a(n) = 4^(n-1)*3*A034176(n-1)/n!, n >= 2, where 3*A034176(n-1) = (4*n-5)(!^4) = Product_{j=2..n} (4*j - 5). (End)
a(n) = (4^(n-1) * Sum_{k=1..n-1} binomial(n+k-1,n-1) * Sum_{j=0..k} binomial(j,n-3*k+2*j-1)*4^(j-k)*binomial(k,j)*3^(-n+3*k-j+1)*2^(n-3*k+j-1)*(-1)^(n-3*k+2*j-1))/n. - Vladimir Kruchinin, Apr 01 2011
n*a(n) + 4*(-4*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 05 2018
a(n) ~ 16^(n-1) / (Gamma(3/4) * n^(5/4)). - Amiram Eldar, Aug 20 2025

A175576 Decimal expansion Pi^(3/2)/Gamma(3/4)^2.

Original entry on oeis.org

3, 7, 0, 8, 1, 4, 9, 3, 5, 4, 6, 0, 2, 7, 4, 3, 8, 3, 6, 8, 6, 7, 7, 0, 0, 6, 9, 4, 3, 9, 0, 5, 2, 0, 0, 9, 2, 4, 3, 5, 1, 9, 7, 6, 4, 7, 0, 4, 3, 5, 3, 3, 8, 1, 1, 1, 7, 1, 8, 5, 6, 0, 9, 0, 1, 1, 2, 0, 4, 3, 5, 5, 3, 6, 7, 6, 2, 3, 9, 9, 5, 6, 7, 1, 4, 5, 4, 3, 7, 2, 3, 3, 0, 0, 7, 4, 3, 7, 9, 4, 5, 5, 5, 5, 4
Offset: 1

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 e of chapter 11 of Ramanujan's second notebook.
In addition, Pi^(3/2) / Gamma(3/4)^2 is the area of the unit "squircle" as defined in MathWorld. (Note that 8*Gamma(5/4)^2 / sqrt(Pi) is the same constant.) - Jean-François Alcover, Feb 24 2011
Real period of the elliptic curve y^2 = x*(x - 1)*(x - 1/2). See Rouse. - Peter Bala, Dec 06 2024

Examples

			3.708149354602743836867700694390520092435197647...
		

Crossrefs

Programs

  • Maple
    Pi^(3/2)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*EllipticTheta[3, 0, Exp[-Pi]]^2, 10, 50][[1]]
    RealDigits[Pi^(3/2)/(Gamma[3/4])^2, 10, 50][[1]] (* G. C. Greubel, Feb 12 2017 *)
  • PARI
    Pi^1.5/gamma(3/4)^2 \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals A175476 / A068465^2 = 1/A175575.
Equals Integral_{-oo, oo} 1/(1+2*x^2)^(3/4) or Integral_{-oo, oo} 1/sqrt(1+x^4). - Jean-François Alcover, Jun 04 2013
Equals sqrt(2)*L, where L is the lemniscate constant A062539. - Jean-François Alcover, Aug 11 2014
From Peter Bala, Mar 01 2022 : (Start)
Equals 3*Sum_{n >= 0} (1/(4*n+1) + 1/(4*n-3))*binomial(1/2,n). Cf. A290570.
Equals hypergeom([-1/2, 3/4, -3/4], [-1/4, 5/4], -1).
Equals 2*hypergeom([1/4, 3/4], [5/4], 1) = (16/5)*hypergeom([-1/4, -3/4], [5/4], 1). (End)
Equals 2 * A093341. - R. J. Mathar, Dec 08 2023
From Peter Bala, Dec 06 2024: (Start)
Equals Pi*hypergeom([1/2, 1/2], [1], 1/2).
Equals 2*Integral_{x = 0..Pi/2} 1/sqrt(1 - (1/2)*sin^2(x)) dx. See Rouse. (End)

A175574 Decimal expansion of sqrt(Pi) / (Gamma(3/4))^2.

Original entry on oeis.org

1, 1, 8, 0, 3, 4, 0, 5, 9, 9, 0, 1, 6, 0, 9, 6, 2, 2, 6, 0, 4, 5, 3, 3, 7, 9, 4, 0, 5, 5, 8, 4, 8, 8, 5, 8, 7, 2, 3, 3, 7, 1, 6, 6, 3, 4, 8, 8, 1, 4, 4, 7, 2, 9, 9, 5, 1, 5, 8, 6, 4, 3, 9, 9, 4, 0, 4, 3, 0, 4, 1, 8, 0, 7, 2, 0, 7, 1, 5, 7, 9, 4, 9, 7, 8, 4, 5, 8, 6, 1, 6, 1, 9, 5, 8, 0, 7, 9, 5, 4, 2, 0, 9, 4, 5
Offset: 1

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 c of chapter 11 of Ramanujan's second notebook.
This constant is also the ratio T(Pi/2)/T(0), where T(Pi/2) is the exact pendulum period for an amplitude of Pi/2 and T(0) the approximate period 2*Pi*sqrt(L/g) for small angles. - Jean-François Alcover, Aug 05 2014

Examples

			1.18034059901609622604533794..
		

Crossrefs

Programs

  • MATLAB
    sqrt(pi)/gamma(3/4)^2 % Altug Alkan, Dec 05 2015
  • Maple
    sqrt(Pi)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    First@ RealDigits[N[Sqrt@ Pi/Gamma[3/4]^2, 120]] (* Michael De Vlieger, Dec 06 2015 *)
  • PARI
    sqrt(Pi)/gamma(3/4)^2 \\ Altug Alkan, Dec 05 2015
    

Formula

Equals A002161 /A068465^2.
Equals 2F1([1/2,1/2],[1],1/2) = 1/agm(1, sqrt(1/2)) = gamma(1/4)^2/(2*Pi^(3/2)).
Equals 2*sqrt(2)*K(-1)/Pi, where K is the complete elliptic integral of the first kind, K(-1) being A085565. - Jean-François Alcover, Jun 03 2014
Equals Product_{k>=1} (1-(-1)^k/(2*k)) = 3/2 * 3/4 * 7/6 * 7/8 * 11/10 * 11/12 * ... . - Richard R. Forberg, Dec 05 2015
Reciprocal of A096427. Equals ( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2, a rapidly converging series. For example, summing from n = -5 to n = 5 gives the constant correct to 49 decimal places. - Peter Bala, Mar 06 2019
Equals Sum_{k>=0} binomial(2*k,k)^2/2^(5*k). - Amiram Eldar, Aug 26 2020
Equals (3/2)*hypergeom([-1/4, 3/4], [3/2], 1). - Peter Bala, Mar 04 2022
Equals A175573^2. - Amiram Eldar, Jul 04 2023

Extensions

A-number typo for sqrt(Pi) corrected by R. J. Mathar, Aug 01 2010

A048779 Coefficients of power series for (1 - (1-8*x)^(1/4))/2.

Original entry on oeis.org

1, 3, 14, 77, 462, 2926, 19228, 129789, 894102, 6258714, 44379972, 318056466, 2299792908, 16755634044, 122874649656, 906200541213, 6716545187814, 50000947509282, 373691291911476, 2802684689336070, 21086865757861860, 159109987082048580, 1203701641403324040
Offset: 1

Keywords

Examples

			G.f.: x + 3*x^2 + 14*x^3 + 77*x^4 + 462*x^5 + 2926*x^6 + 19228*x^7 + ...
		

Crossrefs

Related to Catalan numbers (A000108).

Programs

  • Magma
    [Round(8^(n-1)*Gamma(n-1/4)/(Gamma(3/4)*Gamma(n+1))): n in [1..40]]; // G. C. Greubel, Aug 09 2022
    
  • Mathematica
    a[ n_]:= If[n<1, 0, (-1/2)Pochhammer[-1/4, n] 8^n/n!] (* Michael Somos, Jan 17 2014 *)
    a[ n_]:= SeriesCoefficient[(1 -(1-8x)^(1/4))/2, {x,0,n}] (* Michael Somos, Jan 17 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - (1 - 8*x + x * O(x^n))^(1/4)) / 2, n))} /* Michael Somos, Jan 17 2014 */
    
  • SageMath
    [8^(n-1)*binomial(n-5/4,-1/4)/n for n in (1..40)] # G. C. Greubel, Aug 09 2022

Formula

a(n) = 2^(n-1)*3*7*11*...*(4n-5)/n! = 2*a(n-1)*(32*a(n-2) + a(n-1))/(18*a(n-2) -a(n-1)).
a(n) = -A004984(n)/2.
D-finite with recurrence n*a(n) + 2*(5-4*n)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012
G.f. A(x) =: y satisfies x = y * (1 - y) * (1 - 2*y + 2*y^2). - Michael Somos, Jan 17 2014
0 = a(n) * (64*a(n+1) - 18*a(n+2)) + a(n+1) * (2*a(n+1) + a(n+2)) unless n=0. - Michael Somos, Jan 17 2014
From Karol A. Penson, Dec 19 2015: (Start)
a(n) = 8^(n-1)*binomial(n-5/4, -1/4)/n.
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([3/4], [2], 8*x).
Representation as n-th moment of a positive function on (0, 8): a(n) = int(x^n*((2^(1/4)/(2*Pi*x^(1/4))*(1-x/8)^(1/4))), x=0..8), n=0,1,... . This function is the solution of the Hausdorff moment problem on (0, 8) with moments equal to a(n). As a consequence this representation is unique. (End)
a(n) ~ 2^(3*n-3) / (Gamma(3/4) * n^(5/4)). - Amiram Eldar, Sep 01 2025
Showing 1-10 of 36 results. Next