cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A175573 Decimal expansion of Pi^(1/4)/Gamma(3/4).

Original entry on oeis.org

1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.

Examples

			1.0864348112133080145753161...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017
  • Maple
    Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)
  • PARI
    Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017
    
  • PARI
    2*suminf(k=0,exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018
    

Formula

Equals A092040 / A068465.
Equals Sum_{n=-oo..oo} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013
Equals sqrt(A175574). - Amiram Eldar, Jul 04 2023
Equals Gamma(1/4)/(sqrt(2)*Pi^(3/4)). - Vaclav Kotesovec, Jul 04 2023
Equals Product_{k>=1} tanh((1/2 + i/2)*Pi*k), i=sqrt(-1). - _Antonio Graciá Llorente, Mar 20 2024
Equals Product_{k>=0} (1/2)*(((k+1/2)/(k+1))^(1/2)+((k+1)/(k+1/2))^(1/2)). - Antonio Graciá Llorente, Jul 23 2024
Equals (1/A096427)^2 (see Spanier and Oldham at p. 258). - Stefano Spezia, Dec 31 2024
Equals 2*A319332 = 1/A327995. - Hugo Pfoertner, Dec 31 2024

A096427 Decimal expansion of 1/(sqrt(2)*G), where G is Gauss's constant A014549.

Original entry on oeis.org

8, 4, 7, 2, 1, 3, 0, 8, 4, 7, 9, 3, 9, 7, 9, 0, 8, 6, 6, 0, 6, 4, 9, 9, 1, 2, 3, 4, 8, 2, 1, 9, 1, 6, 3, 6, 4, 8, 1, 4, 4, 5, 9, 1, 0, 3, 2, 6, 9, 4, 2, 1, 8, 5, 0, 6, 0, 5, 7, 9, 3, 7, 2, 6, 5, 9, 7, 3, 4, 0, 0, 4, 8, 3, 4, 1, 3, 4, 7, 5, 9, 7, 2, 3, 2, 0, 0, 2, 9, 3, 9, 9, 4, 6, 1, 1, 2, 2, 9, 9, 4, 2
Offset: 0

Author

Eric W. Weisstein, Jul 21 2004

Keywords

Comments

Also, decimal expansion of Product_{n>=1} (1-1/(4n-1)^2). - Bruno Berselli, Apr 02 2013

Examples

			0.8472130847939790866064991234821916364814459103269... = agm(1, sqrt(1/2))
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:6 at page 13.

Crossrefs

Cf. A014549, A062539, A224268, A091670 (1/C^2), A175574 (1/C), A293238 (C^2), A053004 (sqrt(2)*C), A327995.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(3/4)^2/(Sqrt(2)*Sqrt(Pi(R)/2)); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, Sqrt[2]]/Sqrt[2], 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the comment: *) RealDigits[N[Product[1 - 1/(4 n - 1)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    { default(realprecision, 20080); x=agm(1, sqrt(1/2)); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b096427.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    agm(1, sqrt(1/2)) \\ Michel Marcus, Jun 09 2019
    

Formula

Also equals agm(1,1/sqrt(2)) since agm(1,1/b) = (1/b)*agm(1,b). - Gerald McGarvey, Sep 22 2008
From Peter Bala, Feb 26 2019: (Start)
C = Gamma(3/4)^2/sqrt(Pi).
C = 1/( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} (-1)^n*exp(-Pi*n^2 ) )^2.
Conjecturally, C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} exp(-Pi*(n+1/2)^2 ) )^2.
C = ((-1)^m*4^m/binomial(2*m,m)) * Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ), for m = 0,1,2,....
C = 1 - Integral_{x = 0..1} (sqrt(1 + x^4) - 1)/x^2 dx.
C = 1 - Sum_{n >= 1} binomial(1/2,n)/(4*n - 1) = 1 - Sum_{n >= 0} (-1)^n/(4*n + 3)*Catalan(n)/2^(2*n + 1).
Continued fraction: 1 - 1/(3 + 6/(1 + 12/(3 + ... + (4*n - 1)*(4*n - 2)/(1 + 4*n*(4*n - 1)/(3 + ... ))))). (End)
From Peter Bala, Mar 02 2022 : (Start)
C = (2/3)*hypergeom([1/4, 3/4], [7/4], 1)
C = hypergeom([-1/4, 1/4], [3/4], 1).
C = hypergeom([-1/2, -1/4], [3/4], -1). Cf. A053004.
C = (16/21)*hypergeom([-1/4, -3/4], [7/4], 1). (End)
Equals Pi/(sqrt(2)*A062539). - Amiram Eldar, May 04 2022
C = Integral_{x = 0..Pi/2} sqrt(sin(x)*cos(x)) dx. - Adam Hugill, Nov 27 2022
Equals 1/A175574 = sqrt(A293238) = A327995^2. - Hugo Pfoertner, Dec 26 2024

A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3).

Original entry on oeis.org

1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9
Offset: 1

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's first triple integral.
This is also the value of F. Morley's series from 1902 Sum_{k=0..n} (risefac(k,1/2)/k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],1) with the rising factorial risefac(n,x). See A277232, also for the Hardy reference and a MathWorld link. - Wolfdieter Lang, Nov 11 2016
This constant is transcendental due to a result of Nesterenko, who proves that Gamma(1/4) is algebraically independent of Pi. - Charles R Greathouse IV, Aug 19 2025

Examples

			1.39320392968567685918424626032536824265748121751561787897...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 324.

Crossrefs

Programs

Formula

From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals the square of A175574. Equals A000796/A068465^4. - R. J. Mathar, Jun 17 2016
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0} binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020

A243308 Decimal expansion of h_3, a constant related to certain evaluations of the gamma function from elliptic integrals.

Original entry on oeis.org

1, 0, 1, 7, 4, 0, 8, 7, 9, 7, 5, 9, 5, 9, 5, 6, 0, 0, 8, 6, 6, 9, 5, 3, 8, 7, 5, 3, 3, 5, 0, 0, 6, 3, 4, 2, 5, 9, 9, 5, 2, 5, 6, 9, 1, 8, 5, 4, 5, 4, 1, 1, 8, 9, 9, 9, 1, 5, 0, 5, 4, 2, 3, 7, 5, 3, 5, 2, 1, 2, 4, 3, 1, 8, 0, 6, 2, 5, 0, 1, 6, 3, 9, 4, 4, 2, 3, 6, 6, 6, 5, 0, 9, 7, 6, 1, 2, 0, 0, 7, 9, 2, 7
Offset: 1

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.0174087975959560086695387533500634259952569...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma function, p. 34.

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticK(sqrt((4*sqrt(3)-7)))/(sqrt(2+sqrt(3))*Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[4*EllipticK[4*Sqrt[3]-7]/(Sqrt[2+Sqrt[3]]*Pi), 10, 103] // First
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2 + Sqrt[3]]/2], 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)
    RealDigits[2 EllipticK[(2 - Sqrt[3])/4]/Pi, 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

4*K(4*sqrt(3)-7)/(sqrt(2+sqrt(3))*Pi), where K is the complete elliptic integral of the first kind.
3^(1/4)*GAMMA(1/3)^3/(2*2^(1/3)*Pi^2), where GAMMA is the Euler Gamma function.
GAMMA(1/6)^(3/2)/(2^(5/6)*sqrt(3)*Pi^(5/4)).

A256514 Decimal expansion of the amplitude of a simple pendulum the period of which is twice the period in the small-amplitude approximation.

Original entry on oeis.org

2, 7, 8, 8, 2, 3, 1, 1, 2, 4, 1, 0, 7, 2, 0, 4, 3, 0, 1, 4, 2, 1, 5, 2, 1, 8, 4, 7, 5, 3, 0, 8, 9, 0, 7, 2, 7, 6, 1, 5, 9, 0, 8, 7, 2, 5, 4, 6, 4, 9, 4, 9, 3, 0, 5, 4, 6, 8, 7, 1, 8, 8, 5, 6, 6, 6, 0, 6, 7, 2, 2, 6, 5, 6, 5, 9, 0, 5, 8, 0, 4, 4, 7, 2, 5, 0, 2, 7, 9, 1, 7, 5, 7, 8, 8, 4, 0, 6, 7, 5, 7, 2
Offset: 1

Author

Jean-François Alcover, Apr 01 2015

Keywords

Examples

			2.7882311241072043014215218475308907276159087254649493...
= 159.75387571836004625994511811959034206912586138415864587... in degrees.
		

Crossrefs

Programs

  • Mathematica
    a2 = a /. FindRoot[ (2*EllipticK[ Sin[a/2]^2 ])/Pi == 2, {a, 3}, WorkingPrecision -> 102]; RealDigits[a2] // First
  • PARI
    solve(x=2,3,1/agm(cos(x/2),1)-2) \\ Charles R Greathouse IV, Mar 03 2016

Formula

Solution to (2*K(sin(a/2)^2))/Pi = 2, where K is the complete elliptic integral of the first kind.
Also solution to 1/AGM(1, cos(a/2)) = 2, where AGM is the arithmetic-geometric mean.

A376643 Decimal expansion 4*EllipticK(4/5)/sqrt(5), where EllipticK is the complete elliptic integral of the first kind.

Original entry on oeis.org

4, 0, 3, 7, 8, 1, 1, 6, 3, 9, 9, 5, 6, 8, 4, 6, 4, 3, 1, 1, 6, 8, 0, 2, 8, 8, 7, 9, 9, 9, 7, 8, 6, 4, 9, 3, 0, 1, 3, 6, 0, 8, 3, 9, 9, 3, 4, 0, 8, 8, 0, 6, 8, 5, 7, 8, 6, 3, 4, 9, 6, 1, 5, 9, 8, 9, 7, 7, 7, 3, 8, 3, 7, 8, 6, 5, 3, 1, 9, 4, 7, 4, 4, 4, 0, 7, 7, 0, 1, 5, 0, 7, 0, 3, 3, 7, 9, 1, 9, 6, 9, 1, 0, 5, 7
Offset: 1

Author

Amiram Eldar, Oct 01 2024

Keywords

Comments

A point mass is attached to a frictionless pivot by a massless string of length L and revolves in a vertical circle about the pivot in a uniform gravitational field with an acceleration g. The slowest possible motion occurs when the tension in the string is momentarily zero at the top of the route, and the longest-possible period is then c * sqrt(L/g), where c is this constant.

Examples

			4.03781163995684643116802887999786493013608399340880...
		

Crossrefs

Constants related to similar physical problems: A019692, A038533, A038534, A175574, A256514, A309893, A310000.

Programs

  • Mathematica
    RealDigits[4 * EllipticK[4/5] / Sqrt[5], 10, 120][[1]]
  • PARI
    4*ellK(sqrt(4/5))/sqrt(5)

Formula

Equals 2 * Integral_{0..Pi} (1/sqrt(3 + 2*cos(x))) dx.
Showing 1-6 of 6 results.