cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A096427 Decimal expansion of 1/(sqrt(2)*G), where G is Gauss's constant A014549.

Original entry on oeis.org

8, 4, 7, 2, 1, 3, 0, 8, 4, 7, 9, 3, 9, 7, 9, 0, 8, 6, 6, 0, 6, 4, 9, 9, 1, 2, 3, 4, 8, 2, 1, 9, 1, 6, 3, 6, 4, 8, 1, 4, 4, 5, 9, 1, 0, 3, 2, 6, 9, 4, 2, 1, 8, 5, 0, 6, 0, 5, 7, 9, 3, 7, 2, 6, 5, 9, 7, 3, 4, 0, 0, 4, 8, 3, 4, 1, 3, 4, 7, 5, 9, 7, 2, 3, 2, 0, 0, 2, 9, 3, 9, 9, 4, 6, 1, 1, 2, 2, 9, 9, 4, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2004

Keywords

Comments

Also, decimal expansion of Product_{n>=1} (1-1/(4n-1)^2). - Bruno Berselli, Apr 02 2013

Examples

			0.8472130847939790866064991234821916364814459103269... = agm(1, sqrt(1/2))
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:6 at page 13.

Crossrefs

Cf. A014549, A062539, A224268, A091670 (1/C^2), A175574 (1/C), A293238 (C^2), A053004 (sqrt(2)*C), A327995.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(3/4)^2/(Sqrt(2)*Sqrt(Pi(R)/2)); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, Sqrt[2]]/Sqrt[2], 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the comment: *) RealDigits[N[Product[1 - 1/(4 n - 1)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    { default(realprecision, 20080); x=agm(1, sqrt(1/2)); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b096427.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    agm(1, sqrt(1/2)) \\ Michel Marcus, Jun 09 2019
    

Formula

Also equals agm(1,1/sqrt(2)) since agm(1,1/b) = (1/b)*agm(1,b). - Gerald McGarvey, Sep 22 2008
From Peter Bala, Feb 26 2019: (Start)
C = Gamma(3/4)^2/sqrt(Pi).
C = 1/( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} (-1)^n*exp(-Pi*n^2 ) )^2.
Conjecturally, C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} exp(-Pi*(n+1/2)^2 ) )^2.
C = ((-1)^m*4^m/binomial(2*m,m)) * Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ), for m = 0,1,2,....
C = 1 - Integral_{x = 0..1} (sqrt(1 + x^4) - 1)/x^2 dx.
C = 1 - Sum_{n >= 1} binomial(1/2,n)/(4*n - 1) = 1 - Sum_{n >= 0} (-1)^n/(4*n + 3)*Catalan(n)/2^(2*n + 1).
Continued fraction: 1 - 1/(3 + 6/(1 + 12/(3 + ... + (4*n - 1)*(4*n - 2)/(1 + 4*n*(4*n - 1)/(3 + ... ))))). (End)
From Peter Bala, Mar 02 2022 : (Start)
C = (2/3)*hypergeom([1/4, 3/4], [7/4], 1)
C = hypergeom([-1/4, 1/4], [3/4], 1).
C = hypergeom([-1/2, -1/4], [3/4], -1). Cf. A053004.
C = (16/21)*hypergeom([-1/4, -3/4], [7/4], 1). (End)
Equals Pi/(sqrt(2)*A062539). - Amiram Eldar, May 04 2022
C = Integral_{x = 0..Pi/2} sqrt(sin(x)*cos(x)) dx. - Adam Hugill, Nov 27 2022
Equals 1/A175574 = sqrt(A293238) = A327995^2. - Hugo Pfoertner, Dec 26 2024

A277232 Numerators of the partial sums of the cubes of the expansion coefficients of 1/sqrt(1-x).

Original entry on oeis.org

1, 9, 603, 4949, 2576763, 20864151, 1347632055, 10860010029, 44749069441659, 359788384157147, 23124997294306677, 185685617347012755, 95380005326947177879, 765237422887515344907, 49101291379356533433423, 393721549706169405868509, 12928613856208967961607217787
Offset: 0

Views

Author

Wolfdieter Lang, Nov 11 2016

Keywords

Comments

The denominators seem to coincide with A241756.
These are the partial sums of F. Morley's series Sum_{k>=0} (risefac(m,k)/k!)^3 for m=1/2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, pp. 104, 111.
The Morley formula gives the value of this series for |m| < 2/3 as Gamma(1-3*m/2)/(Gamma(1-m/2)^3)*cos(Pi*m/2). For the present case m=1/2 this value is hypergeometric([1/2,1/2,1/2],[1,1],1) = Pi/Gamma(3/4)^4 given in A091670.

Examples

			The rationals r(n) begin: 1, 9/8, 603/512, 4949/4096, 2576763/2097152, 20864151/16777216, 1347632055/1073741824, ...
The limit is given in A091670, approximately 1.3932039296856768591...
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 104.

Crossrefs

Formula

a(n) = numerator(r(n)) with the rational r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^3 = Sum_{k=0..n} (-1)^k*(binomial(-1/2,k))^3 = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^3. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.

A293238 Decimal expansion of the escape probability for a random walk on the 3D bcc lattice.

Original entry on oeis.org

7, 1, 7, 7, 7, 0, 0, 1, 1, 0, 4, 6, 1, 2, 9, 9, 9, 7, 8, 2, 1, 1, 9, 3, 2, 2, 3, 6, 6, 5, 7, 7, 9, 4, 2, 6, 6, 5, 7, 1, 2, 9, 8, 8, 9, 3, 3, 9, 9, 8, 4, 3, 7, 1, 9, 8, 9, 7, 6, 3, 6, 6, 3, 8, 7, 7, 2, 6, 9, 4, 2, 3, 1, 2, 5, 8, 4, 9, 8, 6, 6, 3, 7, 0, 1, 6, 1
Offset: 0

Views

Author

Andrey Zabolotskiy, Oct 03 2017

Keywords

Comments

The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant, A091670.

Examples

			0.7177700110461299978211932236657794...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (4*Pi(R)^3)/Gamma(1/4)^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[(4*Pi^3)/Gamma[1/4]^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    default(realprecision, 100); (4*Pi^3)/gamma(1/4)^4 \\ G. C. Greubel, Oct 26 2018
    

Formula

Equals Pi^2/(4*K(1/sqrt(2))^2), where K is the complete elliptic integral of the first kind.
Equals (4*Pi^3)/Gamma(1/4)^4. - G. C. Greubel, Oct 26 2018
Equals Product_{n>=1} exp(beta(2n)/n), where beta(n) is the Dirichlet beta function. - Antonio Graciá Llorente, Apr 03 2025
Equals Gamma(3/4)^4/Pi. - Stefano Spezia, Apr 05 2025

A378130 Decimal expansion of 24*L^2/(5^(7/4)*Pi^2), where L is the lemniscate constant (A062539).

Original entry on oeis.org

9, 9, 9, 9, 9, 6, 3, 8, 3, 1, 5, 9, 0, 8, 4, 1, 2, 7, 7, 7, 2, 7, 6, 3, 4, 9, 9, 1, 8, 4, 7, 0, 6, 1, 1, 2, 8, 0, 8, 9, 4, 3, 4, 8, 8, 7, 7, 0, 3, 5, 9, 6, 6, 1, 3, 2, 9, 0, 9, 5, 9, 5, 0, 4, 9, 2, 6, 8, 1, 5, 2, 7, 3, 9, 9, 2, 1, 6, 4, 9, 2, 2, 9, 9, 3, 7, 4, 7, 9, 1
Offset: 0

Views

Author

Paolo Xausa, Nov 18 2024

Keywords

Examples

			0.999996383159084127772763499184706112808943488770...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[12*Pi/(5^(7/4)*Gamma[3/4]^4), 10, 100]] (* or *)
    First[RealDigits[Sum[((-1)^k/6635520^k)*(4*k)!/k!^4, {k, 0, Infinity}], 10, 100]] (* or *)
    First[RealDigits[HypergeometricPFQ[{1/4, 1/2, 3/4}, {1, 1}, -1/25920], 10, 100]]

Formula

Equals 12*Pi/(5^(7/4)*Gamma(3/4)^4) = 12*A091670/5^(7/4).
Equals Sum_{k >= 0} ((-1)^k/6635520^k)*(4*k)!/(k!)^4 = Sum_{k >= 0} ((-1)^k/6635520^k)*A008977(k).
Equals pFq(1/4, 1/2, 3/4; 1, 1; -1/25920), where pFq is the generalized hypergeometric function.

A091671 Decimal expansion of (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi^4).

Original entry on oeis.org

4, 4, 8, 2, 2, 0, 3, 9, 4, 3, 8, 8, 3, 8, 1, 4, 3, 2, 1, 1, 6, 3, 8, 5, 4, 5, 0, 0, 1, 7, 4, 8, 5, 2, 4, 9, 5, 6, 9, 3, 9, 2, 2, 0, 1, 7, 0, 8, 1, 2, 0, 7, 3, 0, 4, 9, 1, 7, 4, 1, 6, 9, 9, 3, 5, 3, 2, 7, 9, 8, 3, 9, 8, 9, 0, 3, 0, 6, 8, 0, 1, 5, 7, 1, 1, 6, 8, 8, 4, 9, 6, 1, 3, 8, 0, 3, 9, 0, 6, 1, 1, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's second triple integral.

Examples

			0.448220394388381432116385450017485249569392201708120730....
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi(R)^4); // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[(3*Gamma[1/3]^6)/(16*2^(2/3)*Pi^4), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    default(realprecision, 100); (3*gamma(1/3)^6)/(16*2^(2/3)*Pi^4) \\ G. C. Greubel, Oct 26 2018
    

A091672 Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2.

Original entry on oeis.org

5, 0, 5, 4, 6, 2, 0, 1, 9, 7, 1, 7, 3, 2, 6, 0, 0, 6, 0, 5, 2, 0, 0, 4, 0, 5, 3, 2, 2, 7, 1, 4, 0, 2, 5, 9, 9, 8, 5, 1, 2, 9, 0, 1, 4, 8, 1, 7, 4, 2, 0, 8, 9, 2, 1, 8, 8, 9, 9, 3, 4, 8, 7, 8, 8, 6, 0, 2, 8, 7, 7, 3, 4, 5, 1, 1, 7, 3, 8, 1, 6, 8, 0, 0, 5, 3, 7, 2, 4, 7, 0, 6, 9, 8, 9, 6, 0, 3, 7, 9, 7, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's third triple integral.

Examples

			0.505462019717326006052004053227140259985129014817420892188993487886...
		

Crossrefs

Programs

  • Maple
    evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
  • PARI
    4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*ellK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2/Pi^2 \\ Charles R Greathouse IV, Feb 04 2025

Extensions

Name corrected by Charles R Greathouse IV, Feb 04 2025

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)

A352615 Decimal expansion of Integral_{0<=x,y<=Pi/2} sqrt(1-cos^2(x)*cos^2(y)) dx dy.

Original entry on oeis.org

2, 0, 7, 7, 6, 8, 1, 4, 6, 0, 0, 2, 8, 1, 5, 8, 2, 0, 5, 7, 8, 3, 1, 2, 0, 5, 5, 6, 7, 8, 5, 5, 2, 9, 0, 1, 2, 8, 0, 3, 7, 7, 9, 0, 5, 7, 6, 2, 4, 7, 8, 2, 4, 1, 0, 0, 6, 3, 5, 0, 3, 8, 0, 4, 8, 2, 2, 6, 3, 5, 5, 3, 1, 4, 6, 3, 2, 0, 3, 8, 4, 6, 3, 3, 0, 1, 6, 0, 0, 0, 0, 9, 6, 9, 2, 1, 9, 0, 7, 5, 2, 3, 4, 0, 5
Offset: 1

Views

Author

Robert FERREOL, Mar 23 2022

Keywords

Examples

			2.0776814600281582057831205567855290128037790576247...
		

Crossrefs

Cf. A091670 ((1/Pi^2)*Integral_{0<=x,y<=Pi} 1/sqrt(1-cos^2(x)*cos^2(y)) dx dy).

Programs

  • Maple
    a:=1/sqrt(2):evalf((EllipticE(a)-EllipticK(a))^2+EllipticE(a)^2,50);
  • Mathematica
    RealDigits[(EllipticE[1/2] - EllipticK[1/2])^2 + EllipticE[1/2]^2, 10, 105][[1]] (* Amiram Eldar, Mar 24 2022 *)

Formula

Equals Sum _{n>=0} (Pi^2/(4*(2*n-1))*(binomial(2*n,n)/4^n)^3).
Equals (E(a) - K(a))^2 + E(a)^2 where a = 1/sqrt(2) and E (resp. K) is the complete elliptic integral of the second (resp. first) kind.
Showing 1-8 of 8 results.