cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3).

Original entry on oeis.org

1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9
Offset: 1

Views

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's first triple integral.
This is also the value of F. Morley's series from 1902 Sum_{k=0..n} (risefac(k,1/2)/k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],1) with the rising factorial risefac(n,x). See A277232, also for the Hardy reference and a MathWorld link. - Wolfdieter Lang, Nov 11 2016
This constant is transcendental due to a result of Nesterenko, who proves that Gamma(1/4) is algebraically independent of Pi. - Charles R Greathouse IV, Aug 19 2025

Examples

			1.39320392968567685918424626032536824265748121751561787897...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 324.

Crossrefs

Programs

Formula

From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals the square of A175574. Equals A000796/A068465^4. - R. J. Mathar, Jun 17 2016
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0} binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020

A241756 A finite sum of products of binomial coefficients: Sum_(m=0..n) binomial(-1/4, m)^2*binomial(-1/4, n-m)^2 (C. C. Grosjean's problem, denominators).

Original entry on oeis.org

1, 8, 512, 4096, 2097152, 16777216, 1073741824, 8589934592, 35184372088832, 281474976710656, 18014398509481984, 144115188075855872, 73786976294838206464, 590295810358705651712, 37778931862957161709568, 302231454903657293676544
Offset: 0

Views

Author

Jean-François Alcover, Apr 28 2014

Keywords

Comments

This sequence seems to appear also as denominators of A277232, A277234, and A278143. - Wolfdieter Lang, Nov 16 2016

References

  • E. S. Andersen and M. E. Larsen. A finite sum of products of binomial coefficients, Problem 92-18, by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.

Crossrefs

Cf. A241755 (numerators), A277232, A277234, A278143.

Programs

  • Mathematica
    a[n_] := Binomial[2*n, n]^2*Binomial[n-1/2, 2*n]*(-1/4)^n; Table[a[n]//Denominator, {n, 0, 20}]

Formula

GAMMA(3/4)^2 * 4F3(1/4, 1/4, -n, -n; 1, 3/4-n, 3/4-n; 1)/(GAMMA(3/4-n)^2*GAMMA(n+1)^2).
binomial(2n, n)^2*binomial(n-1/2, 2n)*(-1/4)^n.
Conjecture (from sequencedb.net): a(n) = 8^A005187(n). - R. J. Mathar, Jun 30 2021

A277233 Numerators of the partial sums of the squares of the expansion coefficients of 1/sqrt(1-x). Also the numerators of the Landau constants.

Original entry on oeis.org

1, 5, 89, 381, 25609, 106405, 1755841, 7207405, 1886504905, 7693763645, 125233642041, 508710104205, 33014475398641, 133748096600189, 2165115508033649, 8754452051708621, 9054883309760265929, 36559890613417481741, 590105629859261338481, 2379942639329101454549
Offset: 0

Views

Author

Wolfdieter Lang, Nov 12 2016

Keywords

Comments

This is the instance m=1/2 of the partial sums r(m,n) = Sum_{k=0..n} (risefac(m,k)/ k!)^2, where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1.
The limit n -> oo does not exist. It would be hypergeometric([1/2,1/2],[1],z -> 1), which diverges.
The partial sums of the cubes converge for |m| < 2/3. See Morley's series under A277232 (for m=1/2).
a(n)/A056982(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019

Examples

			The rationals r(n) begin: 1, 5/4, 89/64, 381/256, 25609/16384, 106405/65536, 1755841/1048576, 7207405/4194304, 1886504905/1073741824, 7693763645/4294967296, ...
		

Crossrefs

Programs

  • Maple
    a := n -> numer(add(binomial(-1/2, j)^2, j=0..n));
    seq(a(n), n=0..19); # Peter Luschny, Sep 26 2019
    # Alternatively:
    G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
    [seq(coeff(ser,x,n), n=0..19)]: numer(%); # Peter Luschny, Sep 28 2019
  • Mathematica
    Accumulate[CoefficientList[Series[1/Sqrt[1-x],{x,0,20}],x]^2]//Numerator (* Harvey P. Dale, Feb 10 2019 *)
    G[x_] := (2 EllipticK[x])/(Pi (1 - x));
    CoefficientList[Series[G[x], {x, 0, 19}], x] // Numerator (* Peter Luschny, Sep 28 2019 *)
  • SageMath
    def A277233(n):
        return sum((A001790(k)*(2^(A005187(n) - A005187(k))))^2 for k in (0..n))
    print([A277233(n) for n in (0..19)]) # Peter Luschny, Sep 30 2019

Formula

a(n) = numerator(r(n)), with the fractional
r(n) = Sum_{k=0..n} (risefac(1/2,k)/k!)^2;
r(n) = Sum_{k=0..n} (binomial(-1/2,k))^2;
r(n) = Sum_{k=0..n} ((2*k-1)!!/(2*k)!!)^2.
The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
r(n) ~ (log(n+3/4) + EulerGamma + 4*log(2))/Pi. - Peter Luschny, Sep 27 2019
Rational generating function: (2*K(x))/(Pi*(1-x)) where K is the complete elliptic integral of the first kind. - Peter Luschny, Sep 28 2019
a(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2. - Peter Luschny, Sep 30 2019

A278143 Numerators of partial sums of a hypergeometric series with value Pi/(sqrt(2)*(Gamma(5/8)*Gamma(7/8))^2) = A278144.

Original entry on oeis.org

1, 7, 475, 3675, 1924475, 15145753, 981654583, 7774283075, 32109931838075, 255083626080725, 16423892777415669, 130705503226766013, 67230186897380845975, 535644114907108845925, 34407319668610517498575, 274347338677567001587475
Offset: 0

Views

Author

Wolfdieter Lang, Nov 14 2016

Keywords

Comments

The denominators appear to be given in A241756.
The series is 1 - (1/2)^3 + (1*3/2*4)^3 -+ ... = Sum_{k>=0} (-1)^k*(risefac(1/2,k)/ k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],-1), where risefac(x,k) = Product_{j =0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference p. 106.
Due to Clausen's formula given in eq. (7.4.5) this is (hypergeometric([1/2,1/2],[1],-1))^2. Hardy's result in eq. (7.4.4) is (Gamma(9/8)/(Gamma(5/4)*Gamma(7/8)))^2 which can be rewritten as (sqrt(Pi)/(2^(1/4)*Gamma(5/8)*Gamma(7/8)))^2. See the Abramowitz-Stegun reference p. 557, 15.1.21 and p. 256, 6.1.18.
This series is the alternating sum version of Morley's series for m=1/2. See A277232. Hence the present sequence gives the numerators of the partial sums of the cubes of the expansion coefficients of 1/sqrt(1+x).

Examples

			The rationals begin: 1, 7/8, 475/512, 3675/4096, 1924475/2097152, 15145753/16777216, 981654583/1073741824, 7774283075/8589934592, ... .
The limit r(n), for n -> oo is Pi/(sqrt(2)*(Gamma(5/8)*Gamma(7/8))^2) = 0.90917563087572... given in A278144.
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 106, eq. (7.4.4).

Crossrefs

Programs

  • Mathematica
    Table[Numerator@ Sum[(-1)^k (Pochhammer[1/2, k]/k!)^3, {k, 0, n}], {n, 0, 15}] (* or *)
    Table[Numerator@ Sum[Binomial[-1/2, k]^3, {k, 0, n}], {n, 0, 15}] (* or *)
    Table[Numerator@ Sum[(-1)^k*((2 k - 1)!!/(2 k)!!)^3, {k, 0, n}], {n, 0, 15}] (* Michael De Vlieger, Nov 15 2016 *)
  • PARI
    for(n=0,25, print1(numerator(sum(k=0,n, binomial(-1/2,k)^3)), ", ")) \\ G. C. Greubel, Feb 06 2017

Formula

a(n) = numerator(r(n)) with the rational r(n) = Sum_{k=0..n} (-1)^k (risefac(1/2,k)/k!)^3 = Sum_{k=0..n} (binomial(-1/2,k))^3 = Sum_{k=0..n} (-1)^k*((2*k-1)!!/(2*k)!!)^3. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)

A277234 Numerators of partial sums of a Ramanujan series converging to 2/Pi = A060294.

Original entry on oeis.org

1, 3, 435, 1855, 1678635, 8178093, 831557727, 4362807735, 26663516457435, 146862472576105, 13439367283090749, 76661183599555737, 54390019021528255975, 318658997759516188425, 27581665786275463543575, 165068987339858265879975, 7173478080571052213369487675
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

The denominators seem to be A241756.
One of Ramanujan's series is 1 - 5*(1/2)^3 + 9*(1*3/(2*4))^3 - 13*(1*3*5/(2*4*6))^3 +- ... = Sum_{k>=0} (-1)^k*(1+4*k)*(risefac(1/2,k)/k!)^3 where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.2) and p. 105, eq. (7.4.2) for s=1/2. The limit is Buffon's constant 2/Pi given in A060294.

Examples

			The rationals r(n) begin: 1, 3/8, 435/512, 1855/4096, 1678635/2097152, 8178093/16777216, 831557727/1073741824, 4362807735/8589934592, ...
The limit r(n), n -> oo, is 2/Pi = 0.6366197723... given in A060294.
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.

Crossrefs

Formula

a(n) = numerator(r(n)), with the rationals r(n) = Sum_{k=0..n} (-1)^k*(1+4*k)*(risefac(1/2,k)/k!)^3 = Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^3 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^3. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Showing 1-6 of 6 results.