A278140 Numerator of partial sums of a Ramanujan series with value 2/(Gamma(3/4)^4), given in A277235.
1, 27, 29835, 914095, 30845936835, 966228811317, 1005862016542383, 31766194302634935, 33673399154070922824435, 1067731823813513897297545, 1101976780048026596318593989, 35023352480137647877041347193, 1154564397329013014999165944225975
Offset: 0
Examples
The rationals r(n) begin: 1, 27/32, 29835/32768, 914095/1048576, 30845936835/34359738368, 966228811317/1099511627776, 1005862016542383/1125899906842624, ... The limit r(n), for n -> oo, is 2/(Gamma(3/4)^4) given in A277235.
References
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106.
Formula
a(n) = numerator(r(n)), with the rationals r(n) = Sum_{k=0..n} (-1)^k*(1+4*k)*(risefac(1/2,k)/k!)^5 = Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Comments