cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074799 a(n) = numerator( (4*n+1)*(Product_{i=1..n} (2*i-1)/Product_{i=1..n} 2*i)^5 ).

Original entry on oeis.org

1, 5, 2187, 40625, 892871875, 20841167403, 16443713753775, 421390226721321, 364130196991193221875, 9816949116755633084375, 8619392462988365485907909, 239904481399203205153660455
Offset: 0

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

References

  • Bruce C. Berndt and Robert Rankin, "Ramanujan : letters and commentary", AMS-LMS, History of mathematics vol. 9, p. 57

Crossrefs

Cf. A074800 (denominators).

Programs

  • Magma
    [Numerator((4*n+1)*((n+1)*Catalan(n)/4^n)^5): n in [0..30]]; // G. C. Greubel, Jul 09 2021
    
  • Mathematica
    Table[Numerator[(4*n+1)*(Binomial[2*n, n]/4^n)^5], {n,0,30}] (* G. C. Greubel, Jul 09 2021 *)
  • PARI
    a(n)=numerator((4*n+1)*(prod(i=1,n,2*i-1)/prod(i=1,n,2*i))^5)
    
  • Sage
    [numerator((4*n+1)*(binomial(2*n, n)/4^n)^5) for n in (0..30)] # G. C. Greubel, Jul 09 2021

Formula

a(n) = numerator of (b(n)), where b(n) = (4*n+1)*(Product_{i=1..n} (2*i - 1)/Product_{i=1..n} 2*i)^5 and b(0) = 1.
1 + Sum_{k>=1} (-1)^k*b(k) = 2/gamma(3/4)^4 = 0.88694116857811540541...
a(n) = numerator( (4*n+1)*( binomial(2*n, n)/4^n )^5 ). - G. C. Greubel, Jul 09 2021

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)

A278140 Numerator of partial sums of a Ramanujan series with value 2/(Gamma(3/4)^4), given in A277235.

Original entry on oeis.org

1, 27, 29835, 914095, 30845936835, 966228811317, 1005862016542383, 31766194302634935, 33673399154070922824435, 1067731823813513897297545, 1101976780048026596318593989, 35023352480137647877041347193, 1154564397329013014999165944225975
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

The denominators are given in A074800.
One of Ramanujan's series is 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 - 13*(1*3*5/(2*4*6))^5 +- ... = Sum_{k>=0} (-1)^k*(1+4*k)*(risefac(1/2,k)/k!)^5 where risefac(x,k) = Product_{j =0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.4) and pp. 105-106, 111. The value of this series is 2/(Gamma(3/4)^4) given in A277235.

Examples

			The rationals r(n) begin: 1, 27/32, 29835/32768, 914095/1048576, 30845936835/34359738368, 966228811317/1099511627776, 1005862016542383/1125899906842624, ...
The limit r(n), for n -> oo, is 2/(Gamma(3/4)^4) given in A277235.
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106.

Crossrefs

Formula

a(n) = numerator(r(n)), with the rationals r(n) = Sum_{k=0..n} (-1)^k*(1+4*k)*(risefac(1/2,k)/k!)^5 = Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The rising factorial has been defined in a comment above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k)/A074800(k).
Showing 1-3 of 3 results.