A247217 Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.
1, 0, 0, 3, 7, 3, 4, 8, 8, 5, 4, 8, 7, 7, 3, 9, 0, 9, 1, 0, 4, 7, 6, 7, 9, 5, 9, 5, 0, 6, 6, 9, 5, 3, 8, 6, 6, 2, 0, 7, 9, 9, 4, 3, 3, 2, 4, 4, 4, 5, 1, 9, 4, 0, 8, 2, 5, 4, 9, 5, 8, 1, 5, 3, 2, 4, 7, 3, 2, 5, 1, 7, 3, 3, 2, 9, 5, 6, 3, 7, 9, 8, 0, 5, 6, 9, 4, 9, 8, 3, 2, 1, 6, 6, 4, 4, 4, 2, 3, 5, 2, 7
Offset: 1
Examples
1.0037348854877390910476795950669538662079943324445194...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's MathWorld, Jacobi Theta Functions
- Wikipedia, Theta function
Crossrefs
Programs
-
Magma
C := ComplexField(); (4*Pi(C)*Sqrt(2) + 6*Pi(C))^(1/4)/(2*Gamma(3/4)); // G. C. Greubel, Jan 07 2018
-
Mathematica
RealDigits[(4*Pi*Sqrt[2] + 6*Pi)^(1/4)/(2*Gamma[3/4]), 10, 102] // First
-
PARI
(4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*gamma(3/4)) \\ Michel Marcus, Nov 26 2014
Formula
Equals (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*Gamma(3/4)).
Equals Sum_{n=-infinity..infinity} exp(-2*Pi*n^2).
Comments