cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A247217 Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 3, 7, 3, 4, 8, 8, 5, 4, 8, 7, 7, 3, 9, 0, 9, 1, 0, 4, 7, 6, 7, 9, 5, 9, 5, 0, 6, 6, 9, 5, 3, 8, 6, 6, 2, 0, 7, 9, 9, 4, 3, 3, 2, 4, 4, 4, 5, 1, 9, 4, 0, 8, 2, 5, 4, 9, 5, 8, 1, 5, 3, 2, 4, 7, 3, 2, 5, 1, 7, 3, 3, 2, 9, 5, 6, 3, 7, 9, 8, 0, 5, 6, 9, 4, 9, 8, 3, 2, 1, 6, 6, 4, 4, 4, 2, 3, 5, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Nov 26 2014

Keywords

Examples

			1.0037348854877390910476795950669538662079943324445194...
		

Crossrefs

Cf. A000122, A175573 (theta_3(0, exp(-Pi))), A273081, A273082, A273083, A273084.

Programs

  • Magma
    C := ComplexField(); (4*Pi(C)*Sqrt(2) + 6*Pi(C))^(1/4)/(2*Gamma(3/4)); // G. C. Greubel, Jan 07 2018
  • Mathematica
    RealDigits[(4*Pi*Sqrt[2] + 6*Pi)^(1/4)/(2*Gamma[3/4]), 10, 102] // First
  • PARI
    (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*gamma(3/4)) \\ Michel Marcus, Nov 26 2014
    

Formula

Equals (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*Gamma(3/4)).
Equals Sum_{n=-infinity..infinity} exp(-2*Pi*n^2).

A273081 Decimal expansion of theta_3(0, exp(-3*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 1, 6, 1, 3, 9, 9, 0, 3, 5, 1, 4, 0, 6, 9, 4, 0, 2, 1, 5, 0, 2, 0, 7, 0, 3, 8, 9, 3, 9, 9, 5, 7, 3, 8, 8, 7, 5, 0, 8, 3, 9, 1, 2, 4, 2, 3, 7, 5, 2, 8, 9, 3, 7, 2, 7, 9, 9, 8, 6, 3, 1, 3, 9, 1, 4, 4, 3, 7, 0, 4, 5, 5, 1, 8, 7, 4, 5, 3, 4, 8, 5, 1, 2, 8, 5, 4, 2, 4, 9, 3, 0, 0, 7, 1, 2, 0, 4, 7, 3, 7, 1
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0001613990351406940215020703893995738875083912423752893728...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); (1+2/Sqrt(3))^(1/4)*Pi(C)^(1/4)/(3^(1/4) *Gamma(3/4)) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf((1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * GAMMA(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-3*Pi]], 10, 105][[1]]
    RealDigits[(1 + 2/Sqrt[3])^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma[3/4]), 10, 105][[1]]
  • PARI
    sqrtn((2/sqrt(3)+1)*Pi/3,4)/gamma(3/4) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals (1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma(3/4)).

A273082 Decimal expansion of theta_3(0, exp(-4*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 6, 9, 7, 4, 6, 8, 4, 7, 1, 2, 4, 1, 7, 9, 9, 1, 2, 7, 9, 3, 5, 7, 4, 5, 5, 7, 2, 2, 7, 7, 3, 3, 8, 6, 0, 8, 4, 8, 1, 1, 8, 1, 9, 3, 4, 3, 9, 5, 9, 6, 7, 0, 2, 4, 3, 4, 2, 3, 6, 2, 3, 8, 8, 2, 3, 7, 0, 8, 1, 9, 5, 5, 9, 4, 5, 4, 9, 6, 1, 9, 2, 5, 3, 0, 0, 9, 2, 4, 6, 2, 9, 9, 5, 1, 4, 6, 7, 9, 7
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.00000697468471241799127935745572277338608481181934395967...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); ((2+2^(3/4))/4)*Pi(C)^(1/4)/Gamma(3/4) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf((2+2^(3/4))/4*Pi^(1/4)/GAMMA(3/4), 120);
    evalf((1 + 2^(1/4)) * GAMMA(1/4) / (2^(7/4)*Pi^(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-4*Pi]], 10, 105][[1]]
    RealDigits[(2 + 2^(3/4))/4 * Pi^(1/4) / Gamma[3/4], 10, 105][[1]]
    RealDigits[(1 + 2^(1/4)) * Gamma[1/4] / (2^(7/4)*Pi^(3/4)), 10, 105][[1]]
  • PARI
    (2^.25+1)*gamma(1/4)/sqrtn(128*Pi^3,4) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals (2 + 2^(3/4))/4 * Pi^(1/4) / Gamma(3/4).
Equals (1 + 2^(1/4)) * Gamma(1/4) / (2^(7/4)*Pi^(3/4)).
Equals sqrt((A247217^2 + A259149^4/A259150^2)/2). - Vaclav Kotesovec, May 17 2023

A273083 Decimal expansion of theta_3(0, exp(-5*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 3, 0, 1, 4, 0, 3, 4, 5, 5, 0, 7, 8, 0, 1, 2, 9, 2, 2, 1, 5, 0, 6, 5, 4, 9, 0, 3, 9, 0, 8, 0, 8, 0, 2, 2, 3, 6, 1, 7, 8, 9, 5, 4, 9, 4, 8, 6, 6, 7, 3, 4, 7, 7, 7, 4, 3, 7, 4, 8, 7, 6, 2, 8, 2, 1, 3, 3, 1, 0, 3, 1, 5, 1, 3, 9, 6, 2, 7, 4, 2, 8, 0, 5, 8, 1, 4, 3, 4, 4, 2, 8, 4, 2, 9, 8, 5, 5, 9
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0000003014034550780129221506549039080802236178954948667347...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); Sqrt(2/5 + 1/Sqrt(5))*Pi(C)^(1/4)/Gamma(3/4) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf(sqrt(2/5 + 1/sqrt(5)) * Pi^(1/4)/GAMMA(3/4), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-5*Pi]], 10, 105][[1]]
    RealDigits[Sqrt[2/5 + 1/Sqrt[5]] * Pi^(1/4)/Gamma[3/4], 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2)
    th3(exp(-5*Pi)) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals sqrt(2/5 + 1/sqrt(5)) * Pi^(1/4)/Gamma(3/4).

A273084 Decimal expansion of theta_3(0, exp(-6*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 4, 8, 2, 4, 2, 7, 2, 1, 5, 9, 8, 0, 1, 4, 5, 6, 4, 2, 4, 3, 3, 0, 2, 3, 0, 9, 0, 6, 7, 4, 5, 7, 3, 2, 5, 4, 1, 4, 6, 0, 4, 1, 5, 7, 5, 1, 1, 4, 8, 0, 1, 1, 9, 0, 4, 5, 9, 3, 4, 8, 2, 3, 9, 1, 1, 1, 3, 6, 1, 2, 5, 1, 7, 1, 1, 8, 6, 0, 8, 8, 8, 1, 0, 9, 2, 6, 4, 0, 4, 4, 6, 7, 4
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0000000130248242721598014564243302309067457325414604157511...
		

Programs

  • Magma
    C := ComplexField(); Sqrt(2+Sqrt(8+6*Sqrt(3)+4*Sqrt(6 +4*Sqrt(3))))*Pi(C)^(1/4)/(2*3^(3/8)*Gamma(3/4)) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf(sqrt(2 + sqrt(8 + 6*sqrt(3) + 4*sqrt(6 + 4*sqrt(3)))) * Pi^(1/4) / (2*3^(3/8) * GAMMA(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-6*Pi]], 10, 105][[1]]
    RealDigits[Sqrt[2 + Sqrt[8 + 6*Sqrt[3] + 4*Sqrt[6 + 4*Sqrt[3]]]] * Pi^(1/4) / (2*3^(3/8) * Gamma[3/4]), 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2) th3(exp(-6*Pi)) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals sqrt(2+sqrt(8+6*sqrt(3)+4*sqrt(6+4*sqrt(3)))) * Pi^(1/4) / (2*3^(3/8)*Gamma(3/4)).
Equals sqrt((A273081^2 + A292888^4/A363018^2)/2). - Vaclav Kotesovec, May 17 2023

A175574 Decimal expansion of sqrt(Pi) / (Gamma(3/4))^2.

Original entry on oeis.org

1, 1, 8, 0, 3, 4, 0, 5, 9, 9, 0, 1, 6, 0, 9, 6, 2, 2, 6, 0, 4, 5, 3, 3, 7, 9, 4, 0, 5, 5, 8, 4, 8, 8, 5, 8, 7, 2, 3, 3, 7, 1, 6, 6, 3, 4, 8, 8, 1, 4, 4, 7, 2, 9, 9, 5, 1, 5, 8, 6, 4, 3, 9, 9, 4, 0, 4, 3, 0, 4, 1, 8, 0, 7, 2, 0, 7, 1, 5, 7, 9, 4, 9, 7, 8, 4, 5, 8, 6, 1, 6, 1, 9, 5, 8, 0, 7, 9, 5, 4, 2, 0, 9, 4, 5
Offset: 1

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 c of chapter 11 of Ramanujan's second notebook.
This constant is also the ratio T(Pi/2)/T(0), where T(Pi/2) is the exact pendulum period for an amplitude of Pi/2 and T(0) the approximate period 2*Pi*sqrt(L/g) for small angles. - Jean-François Alcover, Aug 05 2014

Examples

			1.18034059901609622604533794..
		

Crossrefs

Programs

  • MATLAB
    sqrt(pi)/gamma(3/4)^2 % Altug Alkan, Dec 05 2015
  • Maple
    sqrt(Pi)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    First@ RealDigits[N[Sqrt@ Pi/Gamma[3/4]^2, 120]] (* Michael De Vlieger, Dec 06 2015 *)
  • PARI
    sqrt(Pi)/gamma(3/4)^2 \\ Altug Alkan, Dec 05 2015
    

Formula

Equals A002161 /A068465^2.
Equals 2F1([1/2,1/2],[1],1/2) = 1/agm(1, sqrt(1/2)) = gamma(1/4)^2/(2*Pi^(3/2)).
Equals 2*sqrt(2)*K(-1)/Pi, where K is the complete elliptic integral of the first kind, K(-1) being A085565. - Jean-François Alcover, Jun 03 2014
Equals Product_{k>=1} (1-(-1)^k/(2*k)) = 3/2 * 3/4 * 7/6 * 7/8 * 11/10 * 11/12 * ... . - Richard R. Forberg, Dec 05 2015
Reciprocal of A096427. Equals ( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2, a rapidly converging series. For example, summing from n = -5 to n = 5 gives the constant correct to 49 decimal places. - Peter Bala, Mar 06 2019
Equals Sum_{k>=0} binomial(2*k,k)^2/2^(5*k). - Amiram Eldar, Aug 26 2020
Equals (3/2)*hypergeom([-1/4, 3/4], [3/2], 1). - Peter Bala, Mar 04 2022
Equals A175573^2. - Amiram Eldar, Jul 04 2023

Extensions

A-number typo for sqrt(Pi) corrected by R. J. Mathar, Aug 01 2010

A273086 Decimal expansion of theta_3(0, exp(-sqrt(6)*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 9, 0, 9, 9, 2, 1, 8, 8, 7, 2, 5, 6, 7, 6, 2, 9, 1, 9, 2, 8, 6, 0, 0, 4, 1, 2, 1, 5, 6, 6, 6, 7, 1, 8, 0, 4, 5, 8, 8, 1, 4, 6, 7, 3, 0, 3, 0, 1, 3, 3, 0, 8, 5, 9, 2, 4, 1, 7, 9, 6, 8, 1, 3, 9, 5, 8, 5, 4, 2, 0, 8, 7, 9, 5, 0, 0, 5, 6, 3, 3, 2, 7, 5, 4, 2, 2, 0, 2, 2, 1, 8, 2, 9, 1, 1, 4, 7, 4, 2, 1, 8
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0009099218872567629192860041215666718045881467303013308592...
		

Programs

  • Maple
    evalf(((6 + sqrt(6*(3 + 2*sqrt(2)))) * GAMMA(1/24) * GAMMA(5/24) * GAMMA(7/24) * GAMMA(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)), 120);
    evalf((4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(GAMMA(1/24)*GAMMA(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-Sqrt[6]*Pi]], 10, 105][[1]]
    RealDigits[((6 + Sqrt[6*(3 + 2*Sqrt[2])]) * Gamma[1/24] * Gamma[5/24] * Gamma[7/24] * Gamma[11/24])^(1/4) / (2*6^(3/8)*Pi^(3/4)), 10, 105][[1]]
    RealDigits[(4 - Sqrt[2] + Sqrt[6])^(1/4) * Sqrt[Gamma[1/24]*Gamma[11/24]] / (2^(3/2)*3^(3/8)*Pi^(3/4)), 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2)
    th3(exp(-sqrt(6)*Pi)) \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals ((6 + sqrt(6*(3 + 2*sqrt(2)))) * Gamma(1/24) * Gamma(5/24) * Gamma(7/24) * Gamma(11/24))^(1/4) / (2*6^(3/8)*Pi^(3/4)).
Equals (4 - sqrt(2) + sqrt(6))^(1/4) * sqrt(Gamma(1/24)*Gamma(11/24)) / (2^(3/2)*3^(3/8)*Pi^(3/4)).

A248557 Decimal expansion of (Pi/2)^(1/4)/Gamma(3/4).

Original entry on oeis.org

9, 1, 3, 5, 7, 9, 1, 3, 8, 1, 5, 6, 1, 1, 6, 8, 2, 1, 4, 0, 7, 2, 4, 2, 5, 9, 3, 4, 0, 1, 2, 2, 2, 0, 8, 9, 7, 0, 1, 9, 6, 3, 9, 1, 6, 3, 9, 3, 4, 6, 9, 0, 3, 3, 4, 1, 9, 6, 9, 6, 5, 3, 1, 2, 6, 5, 9, 0, 8, 0, 0, 9, 3, 7, 2, 0, 0, 9, 1, 1, 3, 9, 6, 3, 2, 8, 8, 9, 8, 3, 3, 5, 9, 5, 8, 0, 1, 3, 8, 8, 9, 8, 5
Offset: 0

Author

Jean-François Alcover, Dec 15 2014

Keywords

Examples

			0.913579138156116821407242593401222089701963916393469...
		

Programs

  • Mathematica
    RealDigits[(Pi/2)^(1/4)/Gamma[3/4], 10, 103] // First
  • PARI
    (Pi/2)^(1/4)/gamma(3/4) \\ Michel Marcus, Dec 15 2014

Formula

Also equals theta_2(0,exp(-Pi)), where 'theta' is the elliptic theta function.
Equals A175573 / exp(4*A251992/Pi + Pi/4).
Equals Product_{k>=1} tanh(k*Pi/2). - Amiram Eldar, Jun 12 2021

A273087 Decimal expansion of theta_3(0, exp(-sqrt(2)*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 2, 3, 5, 2, 3, 9, 9, 9, 3, 4, 1, 0, 0, 5, 8, 6, 3, 4, 9, 7, 7, 9, 8, 6, 5, 6, 7, 2, 4, 9, 7, 1, 8, 5, 2, 5, 6, 4, 9, 1, 4, 6, 0, 7, 9, 4, 8, 7, 8, 4, 7, 4, 1, 8, 7, 2, 1, 5, 1, 9, 8, 5, 8, 7, 4, 1, 3, 4, 7, 9, 7, 7, 6, 7, 8, 4, 6, 0, 3, 1, 1, 1, 3, 0, 2, 2, 8, 5, 7, 7, 4, 6, 8, 7, 6, 0, 1, 9, 3, 3, 5, 5, 0
Offset: 1

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0235239993410058634977986567249718525649146079487847418721...
		

Programs

  • Magma
    C := ComplexField(); Gamma(1/8)/(2^(9/8)*Sqrt(Pi(C)*Gamma(1/4))) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf(GAMMA(1/8)/(2^(9/8)*sqrt(Pi*GAMMA(1/4))), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-Sqrt[2]*Pi]], 10, 105][[1]]
    RealDigits[Gamma[1/8]/(2^(9/8)*Sqrt[Pi*Gamma[1/4]]), 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2)
    th3(exp(-sqrt(2)*Pi)) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals Gamma(1/8)/(2^(9/8)*sqrt(Pi*Gamma(1/4))).

A317651 Sequence related to the Taylor expansion of the Jacobi theta_3 constant.

Original entry on oeis.org

1, 1, -1, 51, 849, -26199, 1341999, 82018251, 18703396449, -993278479599, -78795859032801, 38711746282537251, -923351332174412751, 4688204953344642495801, 501271295036889289819599, -89944302490128540556106949, -104694993963067299023875442751, 63396004159664562363095882996001
Offset: 0

Author

Michel Marcus, Aug 03 2018

Keywords

Crossrefs

Cf. A175573 (theta3(1)).

Extensions

More terms from Romik article added by Michel Marcus, Apr 10 2019
Showing 1-10 of 12 results. Next