cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068466 Decimal expansion of Gamma(1/4).

Original entry on oeis.org

3, 6, 2, 5, 6, 0, 9, 9, 0, 8, 2, 2, 1, 9, 0, 8, 3, 1, 1, 9, 3, 0, 6, 8, 5, 1, 5, 5, 8, 6, 7, 6, 7, 2, 0, 0, 2, 9, 9, 5, 1, 6, 7, 6, 8, 2, 8, 8, 0, 0, 6, 5, 4, 6, 7, 4, 3, 3, 3, 7, 7, 9, 9, 9, 5, 6, 9, 9, 1, 9, 2, 4, 3, 5, 3, 8, 7, 2, 9, 1, 2, 1, 6, 1, 8, 3, 6, 0, 1, 3, 6, 7, 2, 3, 3, 8, 4, 3, 0, 0, 3, 6, 1, 4, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and e^Pi over Q. - Charles R Greathouse IV, Nov 11 2013

Examples

			3.6256099082219083119306851558676720029951676828800654674333...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:13 at page 414.

Crossrefs

Programs

  • Magma
    R:= RealField(100); SetDefaultRealField(R); Gamma(1/4); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/4));
  • Mathematica
    RealDigits[Gamma[1/4], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
  • PARI
    default(realprecision, 1080); x=gamma(1/4); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b068466.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    

Formula

From Amiram Eldar, Jun 12 2021: (Start)
Equals sqrt(2*sqrt(2*Pi^3)*G), where G is Gauss's constant (A014549).
Equals (2*Pi)^(3/4) * Product_{k>=1} tanh(k*Pi/2) (Duke and Imamoḡlu, 2006). (End)
Gamma(1/4) * A068465 = A063448. - R. J. Mathar, May 22 2024
Equals Product_{n>=1} exp((2*(6*n + 1)*(1 - beta(n)) - (eta(n) - 1))/(4*n)), where eta(n) and beta(n) are the Dirichlet eta and beta functions, respectively. - Antonio Graciá Llorente, Sep 05 2024

A014549 Decimal expansion of 1 / M(1,sqrt(2)) (Gauss's constant).

Original entry on oeis.org

8, 3, 4, 6, 2, 6, 8, 4, 1, 6, 7, 4, 0, 7, 3, 1, 8, 6, 2, 8, 1, 4, 2, 9, 7, 3, 2, 7, 9, 9, 0, 4, 6, 8, 0, 8, 9, 9, 3, 9, 9, 3, 0, 1, 3, 4, 9, 0, 3, 4, 7, 0, 0, 2, 4, 4, 9, 8, 2, 7, 3, 7, 0, 1, 0, 3, 6, 8, 1, 9, 9, 2, 7, 0, 9, 5, 2, 6, 4, 1, 1, 8, 6, 9, 6, 9, 1, 1, 6, 0, 3, 5, 1, 2, 7, 5, 3, 2, 4, 1, 2, 9, 0, 6, 7, 8, 5
Offset: 0

Views

Author

Keywords

Comments

On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1} 1/sqrt(1-t^4).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n + b_n)/2, b_{n+1} = sqrt(a_n*b_n).

Examples

			0.8346268416740731862814297327990468...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.4 and 6.1, pp. 34, 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(Pi(R)/2)/Gamma(3/4)^2; // G. C. Greubel, Aug 17 2018
  • Maple
    evalf(1/GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[Gamma[1/4]^2/(2*Pi^(3/2)*Sqrt[2]), 10, 105][[1]] (* or: *)
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2]], 10, 105][[1]] (* Jean-François Alcover, Dec 13 2011, updated Nov 11 2016, after Eric W. Weisstein *)
    First[RealDigits[N[EllipticTheta[4, Exp[-Pi]]^2, 90]]] (* Stefano Spezia, Sep 29 2022 *)
  • PARI
    default(realprecision, 20080); x=10*agm(1, sqrt(2))^-1; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014549.txt", n, " ", d)); \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    1/agm(sqrt(2),1) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    sqrt(Pi/2)/gamma(3/4)^2 \\ Charles R Greathouse IV, Feb 04 2015
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=105
    print([int(z) for z in list(str(1/agm(sqrt(2)))[2:-1])]) # Indranil Ghosh, Jul 11 2017
    

Formula

Equals (lim_{k->oo} p(k))/(1+i) and (lim_{k->oo} q(k))/(1+i), where i is the imaginary unit, p(0) = 1, q(0) = i, p(k+1) = 2*p(k)*q(k)/(p(k)+q(k)) and q(k+1) = sqrt(p(k)*q(k)) for k >= 0. - A.H.M. Smeets, Jul 26 2018
Equals the infinite quotient product (3/4)*(6/5)*(7/8)*(10/9)*(11/12)*(14/13)*(15/16)*... . - James Maclachlan, Jul 28 2019
Equals (9/15)*hypergeom([1/2, 3/4], [9/4], 1). - Peter Bala, Mar 03 2022
Equals A062539 / Pi. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 29 2022: (Start)
Equals theta4(exp(-Pi))^2.
Equals sqrt(2)*A093341/Pi. (End)
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^2/16^k. - Amiram Eldar, Jul 04 2023
From Gerry Martens, Jul 31 2023: (Start)
Equals 2*Gamma(5/4)/(sqrt(Pi)*Gamma(3/4)).
Equals hypergeom([1/4, -2/4], [1], 1). (End)
Equals A248557^2. - Hugo Pfoertner, Jun 28 2024

Extensions

Extended to 105 terms by Jean-François Alcover, Dec 13 2011
a(104) corrected by Andrew Howroyd, Feb 23 2018

A251992 Decimal expansion of the double infinite sum (negated) sum_{m=1..infinity} sum_{k=0..infinity} (-1)^m/((2k+1)^2+m^2).

Original entry on oeis.org

4, 8, 0, 7, 5, 1, 1, 4, 4, 4, 2, 4, 1, 0, 9, 7, 8, 0, 5, 2, 0, 8, 6, 2, 6, 3, 1, 3, 5, 2, 4, 0, 8, 5, 7, 4, 2, 4, 8, 4, 4, 4, 7, 3, 1, 6, 7, 9, 4, 6, 9, 0, 2, 0, 7, 5, 5, 4, 7, 2, 1, 3, 2, 6, 8, 9, 1, 0, 8, 5, 1, 7, 0, 7, 7, 6, 5, 3, 9, 5, 3, 5, 3, 5, 7, 1, 5, 2, 7, 7, 6, 3, 1, 7, 4, 3, 0, 7, 5, 4, 2, 2, 9
Offset: 0

Views

Author

Jean-François Alcover, Dec 12 2014

Keywords

Examples

			-0.480751144424109780520862631352408574248444731679469...
		

Crossrefs

Cf. A175573.

Programs

  • Mathematica
    RealDigits[-Pi*(Pi-Log[2])/16, 10, 103] // First

Formula

-Pi*(Pi-log(2))/16.
Also equals sum_{m=1..infinity} (-1)^m*Pi*tanh(m*Pi/2)/(4*m).
Also equals -Pi^2/16 - (Pi/4)*log(theta_2(0,exp(-Pi))) + (Pi/4)*log(theta_3(0,exp(-Pi))), where 'theta' is the elliptic theta function, that is -Pi^2/16 - (Pi/4)*log(A248557) + (Pi/4)*log(A175573).
Showing 1-3 of 3 results.