cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A002161 Decimal expansion of square root of Pi.

Original entry on oeis.org

1, 7, 7, 2, 4, 5, 3, 8, 5, 0, 9, 0, 5, 5, 1, 6, 0, 2, 7, 2, 9, 8, 1, 6, 7, 4, 8, 3, 3, 4, 1, 1, 4, 5, 1, 8, 2, 7, 9, 7, 5, 4, 9, 4, 5, 6, 1, 2, 2, 3, 8, 7, 1, 2, 8, 2, 1, 3, 8, 0, 7, 7, 8, 9, 8, 5, 2, 9, 1, 1, 2, 8, 4, 5, 9, 1, 0, 3, 2, 1, 8, 1, 3, 7, 4, 9, 5, 0, 6, 5, 6, 7, 3, 8, 5, 4, 4, 6, 6, 5
Offset: 1

Views

Author

Keywords

Comments

Also Gamma(1/2). - Franklin T. Adams-Watters, Apr 07 2006
The integral of the Gaussian function exp(-x^2) over the real line. - Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008
Also equals the average distance between two points in two dimensions where coordinates are independent normally distributed random variables with mean 0 and variance 1. - Jean-François Alcover, Oct 31 2014, after Steven Finch
Also diameter of a sphere whose surface area equals Pi^2. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Convergents of continued fractions: 7/4, 16/9, 23/13, 39/22, 257/145, 296/167, 8545/4821, ... - R. J. Mathar, Jan 29 2025

Examples

			1.7724538509055160272981674833411451827975494561223871282138...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 190.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, page 413.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 40.

Crossrefs

Cf. decimal expansions of Gamma(1/k): A073005 (k=3), A068466 (k=4), A175380 (k=5), A175379 (k=6), A220086 (k=7), A203142 (k=8).

Programs

  • Magma
    R:= RealField(100); Sqrt(Pi(R));  // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(sqrt(Pi),120); # Muniru A Asiru, Nov 11 2018
  • Mathematica
    RealDigits[N[Sqrt[Pi], 120]][[1]] (* Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008 *)
  • PARI
    default(realprecision, 20080); x=sqrt(Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002161.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
    

Formula

Equals (1/2) * Sum_{n>=0} ((-1)^n * (4*n+1) * (1/8)^(n+1) * (2^(n+1))^3 * Gamma(n+1/2)^3 / Gamma(n+1)^3). - Alexander R. Povolotsky, Mar 25 2013
Equals Integral_{x=0..1} 1/sqrt(-log(x)) dx. - Jean-François Alcover, Apr 29 2013
Equals Sum_{k>=0} (k+1/2)!/(k+2)!. - Amiram Eldar, Jun 19 2023
Equals Integral_{x=0..oo} exp(-x)/sqrt(x) dx. - Michal Paulovic, Sep 24 2023
Equals Integral_{x=0..oo} 4/(exp(x^2)*(2*x^2 + 1)^2) dx. - Kritsada Moomuang, Jun 05 2025

Extensions

More terms from Franklin T. Adams-Watters, Apr 07 2006

A068465 Decimal expansion of Gamma(3/4).

Original entry on oeis.org

1, 2, 2, 5, 4, 1, 6, 7, 0, 2, 4, 6, 5, 1, 7, 7, 6, 4, 5, 1, 2, 9, 0, 9, 8, 3, 0, 3, 3, 6, 2, 8, 9, 0, 5, 2, 6, 8, 5, 1, 2, 3, 9, 2, 4, 8, 1, 0, 8, 0, 7, 0, 6, 1, 1, 2, 3, 0, 1, 1, 8, 9, 3, 8, 2, 8, 9, 8, 2, 2, 8, 8, 8, 4, 2, 6, 7, 9, 8, 3, 5, 7, 2, 3, 7, 1, 7, 2, 3, 7, 6, 2, 1, 4, 9, 1, 5, 0, 6, 6, 5, 8, 2, 1, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:14 at page 414.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(105)); Gamma(3/4); // G. C. Greubel, Mar 11 2018
  • Maple
    evalf(GAMMA(3/4)) ; # R. J. Mathar, Jan 10 2013
  • Mathematica
    RealDigits[Gamma[3/4], 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
  • PARI
    default(realprecision, 100); gamma(3/4) \\ G. C. Greubel, Mar 11 2018
    

Formula

Gamma(3/4) * A068466 = sqrt(2)*Pi = A063448. - R. J. Mathar, Jun 18 2006
Equals Integral_{x>=0} x^(-1/4)*exp(-x) dx. - Vaclav Kotesovec, Nov 12 2020
Equals (Pi/2)^(1/4) * sqrt(AGM(1,sqrt(2))) = sqrt(A069998 * A053004). - Amiram Eldar, Jun 12 2021

A084943 Decagorials: n-th polygorial for k=10.

Original entry on oeis.org

1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*Gamma(n+1/4)*sqrt(2)*Gamma(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
a(n) ~ 2^(2*n+1) * n^(2*n + 1/4) * Pi /(Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A068467 Decimal expansion of (1/4)! = Gamma(5/4).

Original entry on oeis.org

9, 0, 6, 4, 0, 2, 4, 7, 7, 0, 5, 5, 4, 7, 7, 0, 7, 7, 9, 8, 2, 6, 7, 1, 2, 8, 8, 9, 6, 6, 9, 1, 8, 0, 0, 0, 7, 4, 8, 7, 9, 1, 9, 2, 0, 7, 2, 0, 0, 1, 6, 3, 6, 6, 8, 5, 8, 3, 4, 4, 4, 9, 9, 8, 9, 2, 4, 7, 9, 8, 1, 0, 8, 8, 4, 6, 8, 2, 2, 8, 0, 4, 0, 4, 5, 9, 0, 0, 3, 4, 1, 8, 0, 8, 4, 6, 0, 7, 5, 0, 9, 0, 3, 6
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			0.906402477055477077982671288966918000748791920720...
		

Crossrefs

Cf. A202623.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(5/4); // G. C. Greubel, Mar 11 2018
  • Maple
    evalf(GAMMA(5/4)) ; # R. J. Mathar, Jan 10 2013
  • Mathematica
    RealDigits[Gamma[5/4],10,120][[1]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    gamma(5/4) \\ Altug Alkan, Sep 18 2016
    

Formula

2^(3/4)*(2/e^(16*Pi) + 1)* Pi^(3/4)/(2^(13/16)/(sqrt(2) - 1)^(1/4) + 2^(1/4) + 1) is a very good approximation (~88 digits) which becomes exact if you replace (2/e^(16*Pi) + 1) by EllipticTheta[3,0,exp(-(16*Pi))]. [R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011.]
Equals A068466 /4 . - R. J. Mathar, Jan 10 2013
Also equals integral_{0..oo} exp(-x^4) dx. - Jean-François Alcover, Mar 29 2013
Equals 2^(-5/4)*Pi^(3/4)*Product_{k>=1} tanh(Pi*k/2). - Keshav Raghavan, Aug 25 2016

Extensions

Removed leading zero and adjusted offset, R. J. Mathar, Feb 06 2009
Additional reference from Joerg Arndt, Dec 28 2011
Edited by N. J. A. Sloane, Dec 28 2011

A256166 Decimal expansion of log(Gamma(1/4)).

Original entry on oeis.org

1, 2, 8, 8, 0, 2, 2, 5, 2, 4, 6, 9, 8, 0, 7, 7, 4, 5, 7, 3, 7, 0, 6, 1, 0, 4, 4, 0, 2, 1, 9, 7, 1, 7, 2, 9, 5, 9, 2, 5, 3, 7, 7, 5, 6, 5, 1, 1, 2, 8, 6, 0, 5, 5, 0, 4, 9, 9, 9, 8, 7, 0, 2, 2, 5, 3, 3, 9, 6, 1, 2, 6, 2, 6, 7, 5, 6, 9, 8, 8, 3, 6, 2, 1, 6, 0, 7, 3, 8, 1, 6, 4, 1, 7, 6, 1, 3, 8, 6, 6, 1, 8, 6, 7
Offset: 1

Views

Author

Keywords

Examples

			1.288022524698077457370610440219717295925377565112860...
		

Crossrefs

Cf. A068466 (Gamma(1/4)), A115252 (first Malmsten's integral).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).

Programs

A203142 Decimal expansion of Gamma(1/8).

Original entry on oeis.org

7, 5, 3, 3, 9, 4, 1, 5, 9, 8, 7, 9, 7, 6, 1, 1, 9, 0, 4, 6, 9, 9, 2, 2, 9, 8, 4, 1, 2, 1, 5, 1, 3, 3, 6, 2, 4, 6, 1, 0, 4, 1, 9, 5, 8, 8, 1, 4, 9, 0, 7, 5, 9, 4, 0, 9, 8, 3, 1, 2, 7, 8, 9, 7, 7, 7, 6, 6, 6, 3, 6, 5, 7, 1, 9, 8, 9, 0, 6, 4, 1, 2, 8, 3, 3, 5, 2, 8, 6, 2, 6, 8, 1, 0, 3, 5, 6, 8, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			7.5339415987976119046992298412151336246104195881490759409831...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/8); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/8], 10, 100][[1]] (* Bruno Berselli, Dec 13 2012 *)
    RealDigits[Pi^(1/8) * 2^(17/8) * EllipticK[1/2]^(1/4) * EllipticK[3 - 2*Sqrt[2]]^(1/2), 10, 100][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
  • PARI
    default(realprecision, 100); gamma(1/8) \\ G. C. Greubel, Jan 15 2017
    

Formula

this * A203144 * A231863 /2^(1/4) = A068466. - R. J. Mathar, Jan 15 2021

A257955 Decimal expansion of Gamma(1/Pi).

Original entry on oeis.org

2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).

Examples

			2.8112975146708616421227908037104816935281655223291765...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/Pi), 117);
  • Mathematica
    RealDigits[Gamma[1/Pi], 10, 117][[1]]
  • PARI
    default(realprecision, 117); gamma(1/Pi)

A091670 Decimal expansion of Gamma(1/4)^4/(4*Pi^3).

Original entry on oeis.org

1, 3, 9, 3, 2, 0, 3, 9, 2, 9, 6, 8, 5, 6, 7, 6, 8, 5, 9, 1, 8, 4, 2, 4, 6, 2, 6, 0, 3, 2, 5, 3, 6, 8, 2, 4, 2, 6, 5, 7, 4, 8, 1, 2, 1, 7, 5, 1, 5, 6, 1, 7, 8, 7, 8, 9, 7, 4, 2, 8, 1, 6, 3, 1, 8, 8, 0, 3, 2, 4, 0, 1, 2, 5, 7, 5, 0, 3, 6, 6, 3, 0, 6, 7, 8, 6, 4, 7, 3, 2, 9, 8, 5, 7, 8, 0, 9, 5, 5, 5, 9, 9
Offset: 1

Views

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's first triple integral.
This is also the value of F. Morley's series from 1902 Sum_{k=0..n} (risefac(k,1/2)/k!)^3 = hypergeometric([1/2,1/2,1/2],[1,1],1) with the rising factorial risefac(n,x). See A277232, also for the Hardy reference and a MathWorld link. - Wolfdieter Lang, Nov 11 2016
This constant is transcendental due to a result of Nesterenko, who proves that Gamma(1/4) is algebraically independent of Pi. - Charles R Greathouse IV, Aug 19 2025

Examples

			1.39320392968567685918424626032536824265748121751561787897...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 324.

Crossrefs

Programs

Formula

From Joerg Arndt, Nov 27 2010: (Start)
Equals 1/agm(1,sqrt(1/2))^2.
Equals Gamma(1/4)^4 / (4*Pi^3) = Pi / (Gamma(3/4))^4 = hypergeom([1/2,1/2],[1],1/2)^2, see the two Abramowitz - Stegun references. (End)
Equals the square of A175574. Equals A000796/A068465^4. - R. J. Mathar, Jun 17 2016
Equals hypergeom([1/2,1/2,1/2],[1,1],1) - Wolfdieter Lang, Nov 12 2016
Equals Sum_{k>=0} binomial(2*k,k)^3/2^(6*k). - Amiram Eldar, Aug 26 2020

A064853 Decimal expansion of the Lemniscate constant.

Original entry on oeis.org

5, 2, 4, 4, 1, 1, 5, 1, 0, 8, 5, 8, 4, 2, 3, 9, 6, 2, 0, 9, 2, 9, 6, 7, 9, 1, 7, 9, 7, 8, 2, 2, 3, 8, 8, 2, 7, 3, 6, 5, 5, 0, 9, 9, 0, 2, 8, 6, 3, 2, 4, 6, 3, 2, 5, 6, 3, 3, 6, 4, 3, 4, 0, 7, 6, 0, 1, 5, 8, 1, 1, 7, 4, 1, 4, 0, 8, 2, 8, 5, 0, 0, 4, 6, 0, 5, 9, 1, 0, 6, 5, 9, 2, 2, 8, 5, 8, 1, 8, 6, 8, 9
Offset: 1

Views

Author

Eric W. Weisstein, Sep 22 2001

Keywords

Examples

			5.244115108584239620929679...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^2/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    First@RealDigits[ N[ Gamma[ 1/4 ]^2/Sqrt[ 2 Pi ], 102 ] ]
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/sqrt(2*Pi); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b064853.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    gamma(1/2)*gamma(1/4)/gamma(3/4) \\ Charles R Greathouse IV, Oct 29 2021
    

Formula

Equals Gamma(1/4)^2/sqrt(2*Pi). - G. C. Greubel, Oct 07 2018
Equals 2*A062539 = 4*A085565. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 23 2022: (Start)
Equals 4*Integral_{x=0..Pi/2} 1/sqrt(2*(1 - (1/2)*sin(x)^2)) dx [Gauss, 1799] (see Faulhuber et al.).
Equals 2*sqrt(2)*A093341. (End)

A115252 Decimal expansion of -(Pi*log((sqrt(2*Pi)*Gamma(3/4))/Gamma(1/4)))/2.

Original entry on oeis.org

2, 6, 0, 4, 4, 2, 8, 0, 6, 3, 0, 0, 9, 8, 8, 4, 4, 5, 5, 4, 0, 0, 9, 3, 8, 6, 8, 7, 8, 9, 7, 2, 7, 2, 1, 9, 5, 3, 1, 8, 1, 9, 1, 7, 7, 7, 2, 3, 1, 4, 2, 6, 7, 4, 9, 8, 7, 6, 8, 7, 7, 9, 2, 1, 0, 5, 7, 7, 1, 6, 0, 3, 8, 1, 4, 7, 3, 1, 7, 3, 9, 2, 6, 9, 8, 9, 3, 3, 2, 0, 8, 0, 4, 0, 0, 9, 1, 4, 9, 8, 1, 1, 7, 1, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jan 17 2006

Keywords

Comments

This sequence (its negated version) is also the decimal expansion of the first Malmsten integral int_{x=1..infinity} log(log(x))/(1 + x^2) dx = int_{x=0..1} log(log(1/x))/(1 + x^2) dx = int_{x=0..infinity} 0.5*log(x)/cosh(x) dx = int_{x=Pi/4..Pi/2} log(log(tan(x))) dx = (1/2)*Pi*log(2) + (3/4)*Pi*log(Pi) - Pi*log(Gamma(1/4)). - Iaroslav V. Blagouchine, Mar 29 2015

Examples

			0.26044280630098844554009386878972721953181917772314...
		

Crossrefs

Cf. A256127 (second Malmsten integral), A256128 (third Malmsten integral), A256129 (fourth Malmsten integral), A068466 (Gamma(1/4)), A256166 (log(Gamma(1/4))), A002162 (log 2), A053510 (log Pi).

Programs

  • Mathematica
    RealDigits[-Pi/2*Log[Sqrt[2 Pi] Gamma[3/4]/Gamma[1/4]], 10, 111][[1]] (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    (-Pi*log((sqrt(2*Pi)*gamma(3/4))/gamma(1/4)))/2 \\ Michel Marcus, Dec 06 2014

Formula

Equals integral_[0..1] log(1/log(1/x))/(1+x^2) dx. - Jean-François Alcover, Jan 28 2015
Showing 1-10 of 45 results. Next