cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A062539 Decimal expansion of the Lemniscate constant or Gauss's constant.

Original entry on oeis.org

2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 25 2001

Keywords

Examples

			2.622057554292119810464839589891119413682754951431623162816821703...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.3 and 6.2, pp. 99, 420.

Crossrefs

Equals A000796/A053004 (see PARI script).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2,120); # Muniru A Asiru, Oct 08 2018
    evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4),120); # Martin Renner, Aug 16 2019
    evalf(1/2*Beta(1/4,1/2),120); # Martin Renner, Aug 16 2019
    evalf(2*int(1/sqrt(1-x^4),x=0..1),120); # Martin Renner, Aug 16 2019
  • Mathematica
    RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
  • PARI
    print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    Pi/agm(1,sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    intnum(x=0,Pi, 1/sqrt(1 + sin(x)^2)) \\ Charles R Greathouse IV, Feb 04 2025
    

Formula

Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
A093341 multiplied by A002193. - R. J. Mathar, Aug 28 2013
From Martin Renner, Aug 16 2019: (Start)
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals Pi/AGM(1, sqrt(2)). - Jean-François Alcover, Feb 28 2021
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
Equals (1/2)*A064853 = 2*A085565. - Amiram Eldar, May 04 2022
Equals Pi*A014549. - Hugo Pfoertner, Jun 28 2024
Equals Integral_{x=0..Pi} 1/sqrt(1 + sin(x)^2) dx = EllipticK(-1) (see Finch at p. 420). - Stefano Spezia, Dec 15 2024
Equals Gamma(1/4)^2 / (sqrt(Pi)*2^(3/2)). - Vaclav Kotesovec, Apr 26 2025
Equals (161*6440^(1/4))/(2*Sum_{k>=0} N(k)/D(k)) with N(k) = Pochhammer(1/8,k) * Pochhammer(5/8,k) * (275+8640*k) and D(k) = (k!)^2*25921^k [Jorge Zuniga, 2023].

A093341 Decimal expansion of "lemniscate case".

Original entry on oeis.org

1, 8, 5, 4, 0, 7, 4, 6, 7, 7, 3, 0, 1, 3, 7, 1, 9, 1, 8, 4, 3, 3, 8, 5, 0, 3, 4, 7, 1, 9, 5, 2, 6, 0, 0, 4, 6, 2, 1, 7, 5, 9, 8, 8, 2, 3, 5, 2, 1, 7, 6, 6, 9, 0, 5, 5, 8, 5, 9, 2, 8, 0, 4, 5, 0, 5, 6, 0, 2, 1, 7, 7, 6, 8, 3, 8, 1, 1, 9, 9, 7, 8, 3, 5, 7, 2, 7, 1, 8, 6, 1, 6, 5, 0, 3, 7, 1, 8, 9, 7, 2, 7, 7, 7, 7
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 26 2004

Keywords

Examples

			1.854074677301371918433850347195260046217598823521766905585928045056021...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, Section 18.14.7, p. 658.
  • Jonathan Borwein & Peter Borwein, A Dictionary of Real Numbers. Pacific Grove, California: Wadsworth & Brooks/Cole Advanced Books & Software, 1990, p. iii.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.1 Gauss' Lemniscate Constant, pp. 421-422.

Crossrefs

Programs

  • Maple
    evalf( EllipticK(1/sqrt(2)) ); # R. J. Mathar, Aug 28 2013
  • Mathematica
    RealDigits[ N[ Gamma[1/4]^2 / (4*Sqrt[Pi]), 105]][[1]] (* Jean-François Alcover, Oct 04 2011 *)
    RealDigits[N[EllipticK[1/2], 105]][[1]] (* Vaclav Kotesovec, Feb 22 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/(4*(Pi)^(1/2)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b093341.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009
    
  • PARI
    Pi/agm(sqrt(2),2) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    ellK(1/sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2025

Formula

GAMMA(1/4)^2/(4*(Pi)^(1/2)). - Pab Ter (pabrlos(AT)yahoo.com), May 24 2004
Also equals ellipticK(1/sqrt(2)) = Pi/2*hypergeom([1/2,1/2],[1],1/2),
or also the smallest positive root of cs(x/sqrt(2)|-1), where cs is the Jacobi elliptic function, or also the real half-period of the Weierstrass Pe function (Cf. Finch p. 422). - Jean-François Alcover, Apr 30 2013, updated Aug 01 2014
From Peter Bala, Feb 22 2015: (Start)
Equals Integral_{x = 0..oo} 1/sqrt(1 + x^4) dx = 2 * Integral_{x = 0..1} 1/sqrt(1 + x^4) dx = sqrt(2) * Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
Equals 2 * Sum {n >= 0} (-1/4)^n * binomial(2*n,n) * 1/(4*n + 1). (End)
Equals A062539 / sqrt(2). - Amiram Eldar, May 04 2022
Equals 1/A105372 = A175576/2 = 2*A224268. - Hugo Pfoertner, Aug 27 2024

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004

A224268 Decimal expansion of Product_{n>=1} (1 - 1/(4n+1)^2).

Original entry on oeis.org

9, 2, 7, 0, 3, 7, 3, 3, 8, 6, 5, 0, 6, 8, 5, 9, 5, 9, 2, 1, 6, 9, 2, 5, 1, 7, 3, 5, 9, 7, 6, 3, 0, 0, 2, 3, 1, 0, 8, 7, 9, 9, 4, 1, 1, 7, 6, 0, 8, 8, 3, 4, 5, 2, 7, 9, 2, 9, 6, 4, 0, 2, 2, 5, 2, 8, 0, 1, 0, 8, 8, 8, 4, 1, 9, 0, 5, 9, 9, 8, 9, 1, 7, 8, 6, 3, 5
Offset: 0

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Examples

			0.9270373386506859592169251735976300231087994117608834527929640225280...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Cf. product(1-1/(4n+r)^2, n>=1): A096427 (r=-1), A112628 (r=0), A179587-1 (r=2).

Programs

  • Mathematica
    RealDigits[N[Product[1 - 1/(4 n + 1)^2, {n, 1, Infinity}], 90]][[1]] (* or, by the formula: *) RealDigits[Gamma[1/4]^2/(8 Sqrt[Pi]), 10, 90][[1]]
  • PARI
    prodnumrat(1 - 1/(4*n+1)^2, 1) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals Gamma(1/4)^2/(8*sqrt(Pi)) = L/(4*sqrt(2)), where L is the Lemniscate constant (A064853).
From Peter Bala, Feb 26 2019: (Start)
C = (Pi/4)*( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (-1)^m*2^(2*m+1)/Catalan(m) * Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ), for m = 0,1,2,....
C = Integral_{x = 0..1} 1/sqrt(1 + x^4) dx.
C = (1/sqrt(2))*Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
C = (3/2)*Integral_{x = 0..1} sqrt(1 + x^4) dx - sqrt(2)/2.
C = (1/8)*Integral_{x = 0..1} 1/(x - x^2)^(3/4) dx.
C = Sum_{n >= 0} binomial(-1/2,n)/(4*n + 1) = Sum_{n >= 0} binomial(2*n,n)/4^n * 1/(4*n + 1).
C = (1/2)*Sum_{n >= 0} (-1)^n*binomial(-3/4,n)/(4*n + 1).
Continued fraction: 1 - 1/(5 + 20/(1 + 30/(3 + ... + (4*n)*(4*n + 1)/(1 + (4*n + 1)*(4*n + 2)/(3 + ... ))))).
C = A085565/sqrt(2). C = Pi/(4*A096427). (End)
Equals A093341/2 = A327996^2. - Hugo Pfoertner, Oct 31 2024

A144849 Coefficients in the expansion of the squared sine lemniscate function.

Original entry on oeis.org

1, 6, 336, 77616, 50916096, 76307083776, 226653840838656, 1207012936807028736, 10696277678308486742016, 148900090457044541209706496, 3110043187741674836967136690176, 93885206124269301790338015801901056, 3970859549814416912519992571903015387136
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2009

Keywords

Comments

Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.
Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - Markus Kuba, Nov 18 2014

Examples

			G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...
		

References

  • J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.

Crossrefs

Programs

  • Maple
    a[0]:=1; b[0]:=1;
    for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
    a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
    tb:=[seq(b[n],n=0..15)];
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[n < 0, 0, With[{m = 4*n + 2}, m!*SeriesCoefficient[JacobiSN[x, -1]^2, {x, 0, m}]/(2*(-12)^n)]]; (* Michael Somos, Jul 10 2024 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* Michael Somos, Apr 25 2011 */

Formula

E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - Michael Somos, Jan 03 2013
E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - Markus Kuba, Nov 18 2014

A064536 a(n) = (4^n mod 3^n) mod 2^n.

Original entry on oeis.org

1, 3, 2, 13, 20, 3, 51, 87, 121, 711, 1139, 3537, 8034, 15752, 27922, 49629, 33201, 35975, 143900, 136341, 545364, 2181456, 1060135, 4240540, 16962160, 28647197, 13597858, 205877827, 100616667, 381266393, 1397863922, 3825576990, 8216376565, 14181633879, 22366797148
Offset: 1

Views

Author

Labos Elemer, Oct 08 2001

Keywords

Comments

A generalization of A002380. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 4^n into like powers as follows: 4^n = c3*3^n + c2*2^n + c1*1^n.

Crossrefs

Programs

  • Mathematica
    Table[Mod[PowerMod[4,n,3^n],2^n],{n,40}] (* Harvey P. Dale, Apr 09 2013 *)
  • PARI
    a(n) = { (4^n % 3^n) % 2^n } \\ Harry J. Smith, Sep 17 2009

Formula

n = 7: 4^7 = 16384 = 7*2187 + 8*128 + 51*1 where a(7)=51, the last coefficient; A064630(7) = 7 + 8 + a(7) = 66.

A000692 An approximation to population of x^2 + y^2 <= 2^n.

Original entry on oeis.org

1, 3, 4, 5, 9, 15, 27, 50, 92, 171, 322, 610, 1161, 2220, 4260, 8201, 15828, 30622, 59362, 115287, 224260, 436871, 852161, 1664196, 3253531, 6366973, 12471056, 24447507, 47962236, 94161474, 184983976, 363632192, 715220838, 1407510311
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064533.
Other population sequences for x^2 + y^2: A000050, A000690, A000691.

Formula

a(n) = (b*2^n / sqrt(n*log(2))) * (1 + c/(n*log(2))) where b=0.764223654... is the Landau-Ramanujan constant (A064533) and c=0.5819486593... is the second-order Landau-Ramanujan constant (A227158) given by c = (1/2) * (1-log(Pi*e^gamma/(2*L))) - (1/4) * D(1) where D(s) = (d/ds)(log(Product_{p prime == 3 (mod 4)} 1/(1-p^(-2*s)))) and L is the Lemniscate constant (A064853) [see (12) in Shanks]. - Sean A. Irvine, Feb 25 2011

Extensions

More terms from Sean A. Irvine, Feb 24 2011
Name clarified by Seth A. Troisi, May 23 2022
Showing 1-6 of 6 results.