A179587 Decimal expansion of the volume of square cupola with edge length 1.
1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
Offset: 1
Examples
1.942809041582063365867792482806465385713114583584632048784453158660...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Victor Oxman and Moshe Stupel, Why are the side lengths of the squares inscribed in a triangle so close to each other?, Forum Geometricorum, Vol. 13 (2013), 113-115.
- Wolfram Alpha, Johnson solid 4
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Mathematica
RealDigits[N[1+(2*Sqrt[2])/3,200]] (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
-
PARI
sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016
Formula
Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014
Comments