cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A179587 Decimal expansion of the volume of square cupola with edge length 1.

Original entry on oeis.org

1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022

Examples

			1.942809041582063365867792482806465385713114583584632048784453158660...
		

Crossrefs

Cf. A131594 (decimal expansion of sqrt(2)/3).

Programs

  • Mathematica
    RealDigits[N[1+(2*Sqrt[2])/3,200]]
    (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016

Formula

Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014

A093341 Decimal expansion of "lemniscate case".

Original entry on oeis.org

1, 8, 5, 4, 0, 7, 4, 6, 7, 7, 3, 0, 1, 3, 7, 1, 9, 1, 8, 4, 3, 3, 8, 5, 0, 3, 4, 7, 1, 9, 5, 2, 6, 0, 0, 4, 6, 2, 1, 7, 5, 9, 8, 8, 2, 3, 5, 2, 1, 7, 6, 6, 9, 0, 5, 5, 8, 5, 9, 2, 8, 0, 4, 5, 0, 5, 6, 0, 2, 1, 7, 7, 6, 8, 3, 8, 1, 1, 9, 9, 7, 8, 3, 5, 7, 2, 7, 1, 8, 6, 1, 6, 5, 0, 3, 7, 1, 8, 9, 7, 2, 7, 7, 7, 7
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 26 2004

Keywords

Examples

			1.854074677301371918433850347195260046217598823521766905585928045056021...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, Section 18.14.7, p. 658.
  • Jonathan Borwein & Peter Borwein, A Dictionary of Real Numbers. Pacific Grove, California: Wadsworth & Brooks/Cole Advanced Books & Software, 1990, p. iii.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.1 Gauss' Lemniscate Constant, pp. 421-422.

Crossrefs

Programs

  • Maple
    evalf( EllipticK(1/sqrt(2)) ); # R. J. Mathar, Aug 28 2013
  • Mathematica
    RealDigits[ N[ Gamma[1/4]^2 / (4*Sqrt[Pi]), 105]][[1]] (* Jean-François Alcover, Oct 04 2011 *)
    RealDigits[N[EllipticK[1/2], 105]][[1]] (* Vaclav Kotesovec, Feb 22 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/(4*(Pi)^(1/2)); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b093341.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009
    
  • PARI
    Pi/agm(sqrt(2),2) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    ellK(1/sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2025

Formula

GAMMA(1/4)^2/(4*(Pi)^(1/2)). - Pab Ter (pabrlos(AT)yahoo.com), May 24 2004
Also equals ellipticK(1/sqrt(2)) = Pi/2*hypergeom([1/2,1/2],[1],1/2),
or also the smallest positive root of cs(x/sqrt(2)|-1), where cs is the Jacobi elliptic function, or also the real half-period of the Weierstrass Pe function (Cf. Finch p. 422). - Jean-François Alcover, Apr 30 2013, updated Aug 01 2014
From Peter Bala, Feb 22 2015: (Start)
Equals Integral_{x = 0..oo} 1/sqrt(1 + x^4) dx = 2 * Integral_{x = 0..1} 1/sqrt(1 + x^4) dx = sqrt(2) * Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
Equals 2 * Sum {n >= 0} (-1/4)^n * binomial(2*n,n) * 1/(4*n + 1). (End)
Equals A062539 / sqrt(2). - Amiram Eldar, May 04 2022
Equals 1/A105372 = A175576/2 = 2*A224268. - Hugo Pfoertner, Aug 27 2024

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004

A096427 Decimal expansion of 1/(sqrt(2)*G), where G is Gauss's constant A014549.

Original entry on oeis.org

8, 4, 7, 2, 1, 3, 0, 8, 4, 7, 9, 3, 9, 7, 9, 0, 8, 6, 6, 0, 6, 4, 9, 9, 1, 2, 3, 4, 8, 2, 1, 9, 1, 6, 3, 6, 4, 8, 1, 4, 4, 5, 9, 1, 0, 3, 2, 6, 9, 4, 2, 1, 8, 5, 0, 6, 0, 5, 7, 9, 3, 7, 2, 6, 5, 9, 7, 3, 4, 0, 0, 4, 8, 3, 4, 1, 3, 4, 7, 5, 9, 7, 2, 3, 2, 0, 0, 2, 9, 3, 9, 9, 4, 6, 1, 1, 2, 2, 9, 9, 4, 2
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2004

Keywords

Comments

Also, decimal expansion of Product_{n>=1} (1-1/(4n-1)^2). - Bruno Berselli, Apr 02 2013

Examples

			0.8472130847939790866064991234821916364814459103269... = agm(1, sqrt(1/2))
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:6 at page 13.

Crossrefs

Cf. A014549, A062539, A224268, A091670 (1/C^2), A175574 (1/C), A293238 (C^2), A053004 (sqrt(2)*C), A327995.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(3/4)^2/(Sqrt(2)*Sqrt(Pi(R)/2)); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[ArithmeticGeometricMean[1, Sqrt[2]]/Sqrt[2], 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the comment: *) RealDigits[N[Product[1 - 1/(4 n - 1)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    { default(realprecision, 20080); x=agm(1, sqrt(1/2)); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b096427.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    agm(1, sqrt(1/2)) \\ Michel Marcus, Jun 09 2019
    

Formula

Also equals agm(1,1/sqrt(2)) since agm(1,1/b) = (1/b)*agm(1,b). - Gerald McGarvey, Sep 22 2008
From Peter Bala, Feb 26 2019: (Start)
C = Gamma(3/4)^2/sqrt(Pi).
C = 1/( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} (-1)^n*exp(-Pi*n^2 ) )^2.
Conjecturally, C = (1/sqrt(2)) * 1/( Sum_{n = -inf..inf} exp(-Pi*(n+1/2)^2 ) )^2.
C = ((-1)^m*4^m/binomial(2*m,m)) * Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ), for m = 0,1,2,....
C = 1 - Integral_{x = 0..1} (sqrt(1 + x^4) - 1)/x^2 dx.
C = 1 - Sum_{n >= 1} binomial(1/2,n)/(4*n - 1) = 1 - Sum_{n >= 0} (-1)^n/(4*n + 3)*Catalan(n)/2^(2*n + 1).
Continued fraction: 1 - 1/(3 + 6/(1 + 12/(3 + ... + (4*n - 1)*(4*n - 2)/(1 + 4*n*(4*n - 1)/(3 + ... ))))). (End)
From Peter Bala, Mar 02 2022 : (Start)
C = (2/3)*hypergeom([1/4, 3/4], [7/4], 1)
C = hypergeom([-1/4, 1/4], [3/4], 1).
C = hypergeom([-1/2, -1/4], [3/4], -1). Cf. A053004.
C = (16/21)*hypergeom([-1/4, -3/4], [7/4], 1). (End)
Equals Pi/(sqrt(2)*A062539). - Amiram Eldar, May 04 2022
C = Integral_{x = 0..Pi/2} sqrt(sin(x)*cos(x)) dx. - Adam Hugill, Nov 27 2022
Equals 1/A175574 = sqrt(A293238) = A327995^2. - Hugo Pfoertner, Dec 26 2024

A112628 Decimal expansion of 2*sqrt(2)/Pi.

Original entry on oeis.org

9, 0, 0, 3, 1, 6, 3, 1, 6, 1, 5, 7, 1, 0, 6, 0, 6, 9, 5, 5, 5, 1, 9, 9, 1, 9, 1, 0, 0, 6, 7, 4, 0, 5, 8, 2, 6, 6, 4, 5, 7, 4, 1, 4, 9, 9, 5, 5, 2, 2, 0, 6, 2, 5, 5, 7, 1, 4, 3, 7, 4, 7, 1, 2, 3, 1, 4, 5, 8, 7, 3, 0, 7, 1, 9, 0, 4, 6, 3, 4, 4, 9, 9, 8, 0, 8, 2, 7, 7, 7, 7, 5, 4, 0, 8, 2, 3, 4, 0, 9, 9, 7, 5, 5, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jan 11 2006

Keywords

Comments

Example of extension to Buffon's Needle Problem: The probability that the boundary of a square will intersect one of the parallel lines if the square's diagonal length l (almost) equals the distance d between each pair of lines. This follows directly from the Weisstein/MathWorld Buffon's Needle Problem link's statement P=p/(Pi*d), where P is the probability of intersection with any convex polygon's boundary if the generalized diameter of that polygon is less than d and p is the perimeter of the polygon. (Take d=l, then p=2*sqrt(2)*d.).
The area of a regular octagon circumscribed in a unit-area circle. - Amiram Eldar, Nov 05 2020

Examples

			0.9003163161571060695551991910067405826645741499552206255714374712314587307...
		

Crossrefs

Cf. A060294 (2/Pi), A089491 (3/Pi), A224268.

Programs

  • Magma
    R:= RealField(100); 2*Sqrt(2)/Pi(R); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[2 Sqrt[2]/Pi, 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the second comment: *) RealDigits[N[Product[1 - 1/(4 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    2*sqrt(2)/Pi
    

Formula

Equals Product_{n>=1} (1-1/(4*n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/4). - Peter Luschny, Oct 04 2019
Equals Product_{k>=3} cos(Pi/2^k). - Amiram Eldar, Aug 24 2020

A254794 Decimal expansion of L^2/Pi where L is the lemniscate constant A062539.

Original entry on oeis.org

2, 1, 8, 8, 4, 3, 9, 6, 1, 5, 2, 2, 6, 4, 7, 6, 6, 3, 8, 8, 3, 6, 7, 6, 9, 9, 4, 0, 7, 0, 4, 4, 6, 4, 5, 4, 3, 2, 5, 9, 3, 7, 2, 7, 2, 2, 8, 2, 5, 5, 6, 6, 7, 2, 2, 1, 1, 9, 2, 8, 6, 2, 1, 0, 5, 7, 9, 4, 5, 1, 9, 3, 8, 4, 4, 5, 9, 3, 2, 9, 4, 7, 7, 7, 1, 0, 3, 3, 1, 4, 9, 6, 7, 7, 5, 6, 0, 8, 6, 3, 1, 8, 0, 2
Offset: 1

Views

Author

Peter Bala, Feb 22 2015

Keywords

Comments

Brouncker gave the generalized continued fraction expansion 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))). More generally, Osler shows that the continued fraction n + 1^2/(2*n + 3^2/(2*n + 5^2/(2*n + ... ))) equals a rational multiple of 4/Pi or its reciprocal when n is a positive odd integer, and equals a rational multiple of L^2/Pi or its reciprocal when n is a positive even integer.

Examples

			2.18843961522647663883676994070446454325937272282556672211928621....
		

References

  • O. Perron, Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(110)); 2*(Gamma(5/4)/Gamma(3/2))^4; // G. C. Greubel, Mar 06 2019
    
  • Maple
    #A254794
    digits:=105:
    2*( GAMMA(5/4)/GAMMA(3/2) )^4:
    evalf(%);
  • Mathematica
    RealDigits[2*(Gamma[5/4]/Gamma[3/2])^4, 10, 110][[1]] (* G. C. Greubel, Mar 06 2019 *)
  • PARI
    default(realprecision, 110); 2*(gamma(5/4)/gamma(3/2))^4 \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    numerical_approx(2*(gamma(5/4)/gamma(3/2))^4, digits=110) # G. C. Greubel, Mar 06 2019

Formula

L^2/Pi = 2*( (1/4)!/(1/2)! )^4 = 9/4*( (1/4)!/(3/4)! )^2.
L^2/Pi = lim_{n -> oo} (4*n + 2) * Product {k = 0..n} ( (4*k - 1)/(4*k + 1) )^2
Generalized continued fraction: L^2/Pi = 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))). This is the particular case n = 0, x = 2 of a result of Ramanujan - see Berndt et al., Entry 25. See also Perron, p. 35.
The sequence of convergents to Ramanujan's continued fraction begins [2/1, 9/4, 54/25, 441/200, 4410/2025, ...]. See A254795 for the numerators and A254796 for the denominators.
Another continued fraction is L^2/Pi = 1 + 2/(1 + 1*3/(2 + 3*5/(2 + 5*7/(2 + 7*9/(2 + ... ))))), which can be transformed into the slowly converging series: L^2/Pi = 1 + 4 * Sum {n >= 0} P(n)^2/(4*n + 5), where P(n) = Product {k = 1..n} (4*k - 1)/(4*k + 1).
(L^2/Pi)^2 = 3 + 2*( 1^2/(1 + 1^2/(3 + 3^2/(1 + 3^2/(3 + 5^2/(1 + 5^2/(3 + ... )))))) ) follows by setting n = 0, x = 2 in Entry 26 of Berndt et al.
From Peter Bala, Feb 28 2019: (Start)
For m = 0,1,2,..., C = 4*(m + 1)*P(m)/Q(m), where P(m) = Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ) and Q(m) = Product_{n >= 0} ( 1 - (4*m + 1)^2/(4*n + 3)^2 ).
For m = 0,1,2,..., C = - Product_{k = 1..m} (1 - 4*k)/(1 + 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 1)^2 ) and
1/C = Product_{k = 0..m} (1 + 4*k)/(1 - 4*k) * Product_{n >= 0} ( 1 - (4*m + 2)^2/(4*n + 3)^2 ).
C = (Pi/2) * ( Sum_{n = -oo..oo} exp(-Pi*n^2) )^4. (End)
Equals A133748/Pi. - Hugo Pfoertner, Apr 13 2024

A371466 Decimal expansion of Product_{k>=1} (1 - 1/(3*k+1)^2).

Original entry on oeis.org

8, 8, 3, 3, 1, 9, 3, 7, 5, 1, 4, 2, 7, 2, 4, 9, 7, 8, 6, 5, 6, 8, 4, 4, 7, 4, 9, 8, 2, 4, 2, 1, 9, 3, 5, 1, 2, 8, 5, 9, 3, 4, 2, 6, 9, 1, 0, 1, 2, 7, 8, 7, 6, 5, 0, 6, 3, 4, 5, 2, 6, 2, 0, 9, 1, 7, 7, 2, 6, 5, 0, 0, 8, 6, 4, 0, 5, 3, 9, 5, 6, 8, 0, 2, 7, 4, 3, 4, 9, 6, 6, 6, 6, 6, 9, 1, 7, 9, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2024

Keywords

Examples

			0.8833193751427249786568447498242193512859342691...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/3]^3/(4 Sqrt[3] Pi), 10, 100][[1]]

Formula

Equals Gamma(1/3)^3 / (4 * sqrt(3) * Pi).
Equals A290570/2. - Hugo Pfoertner, Mar 31 2024
Equals Integral_{x=0..1} (1-x^3)^(1/3) dx. - Mikhail Kurkov, Jun 29 2025

A371467 Decimal expansion of Product_{k>=0} (1 - 1/(3*k+2)^2).

Original entry on oeis.org

6, 8, 4, 4, 6, 3, 4, 0, 5, 9, 7, 9, 7, 2, 5, 7, 2, 7, 0, 1, 1, 0, 7, 6, 9, 7, 8, 8, 6, 6, 3, 4, 6, 3, 2, 8, 9, 5, 5, 6, 8, 3, 8, 0, 8, 7, 3, 5, 7, 3, 0, 2, 8, 3, 9, 2, 1, 5, 3, 8, 9, 4, 6, 0, 3, 9, 3, 3, 9, 0, 2, 1, 8, 1, 3, 2, 3, 8, 3, 4, 6, 4, 4, 3, 4, 5, 1, 0, 3, 6, 4, 7, 6, 6, 8, 2, 2, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2024

Keywords

Examples

			0.6844634059797257270110769788663463289556838...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(4/3) Pi^2/Gamma[1/3]^3, 10, 100][[1]]

Formula

Equals (4/3) * Pi^2 / Gamma(1/3)^3.
Equals 1/A224273. - Hugo Pfoertner, Mar 31 2024
Showing 1-7 of 7 results.