cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A062539 Decimal expansion of the Lemniscate constant or Gauss's constant.

Original entry on oeis.org

2, 6, 2, 2, 0, 5, 7, 5, 5, 4, 2, 9, 2, 1, 1, 9, 8, 1, 0, 4, 6, 4, 8, 3, 9, 5, 8, 9, 8, 9, 1, 1, 1, 9, 4, 1, 3, 6, 8, 2, 7, 5, 4, 9, 5, 1, 4, 3, 1, 6, 2, 3, 1, 6, 2, 8, 1, 6, 8, 2, 1, 7, 0, 3, 8, 0, 0, 7, 9, 0, 5, 8, 7, 0, 7, 0, 4, 1, 4, 2, 5, 0, 2, 3, 0, 2, 9, 5, 5, 3, 2, 9, 6, 1, 4, 2, 9, 0, 9, 3, 4, 4, 6, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 25 2001

Keywords

Examples

			2.622057554292119810464839589891119413682754951431623162816821703...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.3 and 6.2, pp. 99, 420.

Crossrefs

Equals A000796/A053004 (see PARI script).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1/2)*Sqrt(2*Pi(R)^3)/Gamma(3/4)^2; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf((1/2)*sqrt(2*Pi^3)/GAMMA(3/4)^2,120); # Muniru A Asiru, Oct 08 2018
    evalf(1/2*GAMMA(1/4)*GAMMA(1/2)/GAMMA(3/4),120); # Martin Renner, Aug 16 2019
    evalf(1/2*Beta(1/4,1/2),120); # Martin Renner, Aug 16 2019
    evalf(2*int(1/sqrt(1-x^4),x=0..1),120); # Martin Renner, Aug 16 2019
  • Mathematica
    RealDigits[Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2, 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)
  • PARI
    print(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 5080); x=Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062539.txt", n, " ", d)); \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    Pi/agm(1,sqrt(2)) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    intnum(x=0,Pi, 1/sqrt(1 + sin(x)^2)) \\ Charles R Greathouse IV, Feb 04 2025
    

Formula

Equals (1/2)*sqrt(2*Pi^3)/Gamma(3/4)^2.
A093341 multiplied by A002193. - R. J. Mathar, Aug 28 2013
From Martin Renner, Aug 16 2019: (Start)
Equals 2*Integral_{x=0..1} 1/sqrt(1-x^4) dx.
Equals 1/2*B(1/4,1/2) with Beta function B(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y). (End)
Equals Pi/AGM(1, sqrt(2)). - Jean-François Alcover, Feb 28 2021
Equals 2*hypergeom([1/2, 1/4], [5/4], 1). - Peter Bala, Mar 02 2022
Equals (1/2)*A064853 = 2*A085565. - Amiram Eldar, May 04 2022
Equals Pi*A014549. - Hugo Pfoertner, Jun 28 2024
Equals Integral_{x=0..Pi} 1/sqrt(1 + sin(x)^2) dx = EllipticK(-1) (see Finch at p. 420). - Stefano Spezia, Dec 15 2024
Equals Gamma(1/4)^2 / (sqrt(Pi)*2^(3/2)). - Vaclav Kotesovec, Apr 26 2025
Equals (161*6440^(1/4))/(2*Sum_{k>=0} N(k)/D(k)) with N(k) = Pochhammer(1/8,k) * Pochhammer(5/8,k) * (275+8640*k) and D(k) = (k!)^2*25921^k [Jorge Zuniga, 2023].

A014549 Decimal expansion of 1 / M(1,sqrt(2)) (Gauss's constant).

Original entry on oeis.org

8, 3, 4, 6, 2, 6, 8, 4, 1, 6, 7, 4, 0, 7, 3, 1, 8, 6, 2, 8, 1, 4, 2, 9, 7, 3, 2, 7, 9, 9, 0, 4, 6, 8, 0, 8, 9, 9, 3, 9, 9, 3, 0, 1, 3, 4, 9, 0, 3, 4, 7, 0, 0, 2, 4, 4, 9, 8, 2, 7, 3, 7, 0, 1, 0, 3, 6, 8, 1, 9, 9, 2, 7, 0, 9, 5, 2, 6, 4, 1, 1, 8, 6, 9, 6, 9, 1, 1, 6, 0, 3, 5, 1, 2, 7, 5, 3, 2, 4, 1, 2, 9, 0, 6, 7, 8, 5
Offset: 0

Views

Author

Keywords

Comments

On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1} 1/sqrt(1-t^4).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n + b_n)/2, b_{n+1} = sqrt(a_n*b_n).

Examples

			0.8346268416740731862814297327990468...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.5.4 and 6.1, pp. 34, 420.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 92.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(Pi(R)/2)/Gamma(3/4)^2; // G. C. Greubel, Aug 17 2018
  • Maple
    evalf(1/GaussAGM(1, sqrt(2)), 144);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    RealDigits[Gamma[1/4]^2/(2*Pi^(3/2)*Sqrt[2]), 10, 105][[1]] (* or: *)
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2]], 10, 105][[1]] (* Jean-François Alcover, Dec 13 2011, updated Nov 11 2016, after Eric W. Weisstein *)
    First[RealDigits[N[EllipticTheta[4, Exp[-Pi]]^2, 90]]] (* Stefano Spezia, Sep 29 2022 *)
  • PARI
    default(realprecision, 20080); x=10*agm(1, sqrt(2))^-1; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014549.txt", n, " ", d)); \\ Harry J. Smith, Apr 20 2009
    
  • PARI
    1/agm(sqrt(2),1) \\ Charles R Greathouse IV, Feb 04 2015
    
  • PARI
    sqrt(Pi/2)/gamma(3/4)^2 \\ Charles R Greathouse IV, Feb 04 2015
    
  • Python
    from mpmath import mp, agm, sqrt
    mp.dps=105
    print([int(z) for z in list(str(1/agm(sqrt(2)))[2:-1])]) # Indranil Ghosh, Jul 11 2017
    

Formula

Equals (lim_{k->oo} p(k))/(1+i) and (lim_{k->oo} q(k))/(1+i), where i is the imaginary unit, p(0) = 1, q(0) = i, p(k+1) = 2*p(k)*q(k)/(p(k)+q(k)) and q(k+1) = sqrt(p(k)*q(k)) for k >= 0. - A.H.M. Smeets, Jul 26 2018
Equals the infinite quotient product (3/4)*(6/5)*(7/8)*(10/9)*(11/12)*(14/13)*(15/16)*... . - James Maclachlan, Jul 28 2019
Equals (9/15)*hypergeom([1/2, 3/4], [9/4], 1). - Peter Bala, Mar 03 2022
Equals A062539 / Pi. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 29 2022: (Start)
Equals theta4(exp(-Pi))^2.
Equals sqrt(2)*A093341/Pi. (End)
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^2/16^k. - Amiram Eldar, Jul 04 2023
From Gerry Martens, Jul 31 2023: (Start)
Equals 2*Gamma(5/4)/(sqrt(Pi)*Gamma(3/4)).
Equals hypergeom([1/4, -2/4], [1], 1). (End)
Equals A248557^2. - Hugo Pfoertner, Jun 28 2024

Extensions

Extended to 105 terms by Jean-François Alcover, Dec 13 2011
a(104) corrected by Andrew Howroyd, Feb 23 2018

A175576 Decimal expansion Pi^(3/2)/Gamma(3/4)^2.

Original entry on oeis.org

3, 7, 0, 8, 1, 4, 9, 3, 5, 4, 6, 0, 2, 7, 4, 3, 8, 3, 6, 8, 6, 7, 7, 0, 0, 6, 9, 4, 3, 9, 0, 5, 2, 0, 0, 9, 2, 4, 3, 5, 1, 9, 7, 6, 4, 7, 0, 4, 3, 5, 3, 3, 8, 1, 1, 1, 7, 1, 8, 5, 6, 0, 9, 0, 1, 1, 2, 0, 4, 3, 5, 5, 3, 6, 7, 6, 2, 3, 9, 9, 5, 6, 7, 1, 4, 5, 4, 3, 7, 2, 3, 3, 0, 0, 7, 4, 3, 7, 9, 4, 5, 5, 5, 5, 4
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 e of chapter 11 of Ramanujan's second notebook.
In addition, Pi^(3/2) / Gamma(3/4)^2 is the area of the unit "squircle" as defined in MathWorld. (Note that 8*Gamma(5/4)^2 / sqrt(Pi) is the same constant.) - Jean-François Alcover, Feb 24 2011
Real period of the elliptic curve y^2 = x*(x - 1)*(x - 1/2). See Rouse. - Peter Bala, Dec 06 2024

Examples

			3.708149354602743836867700694390520092435197647...
		

Crossrefs

Programs

  • Maple
    Pi^(3/2)/GAMMA(3/4)^2 ; evalf(%) ;
  • Mathematica
    RealDigits[Pi*EllipticTheta[3, 0, Exp[-Pi]]^2, 10, 50][[1]]
    RealDigits[Pi^(3/2)/(Gamma[3/4])^2, 10, 50][[1]] (* G. C. Greubel, Feb 12 2017 *)
  • PARI
    Pi^1.5/gamma(3/4)^2 \\ Charles R Greathouse IV, Jun 06 2016

Formula

Equals A175476 / A068465^2 = 1/A175575.
Equals Integral_{-oo, oo} 1/(1+2*x^2)^(3/4) or Integral_{-oo, oo} 1/sqrt(1+x^4). - Jean-François Alcover, Jun 04 2013
Equals sqrt(2)*L, where L is the lemniscate constant A062539. - Jean-François Alcover, Aug 11 2014
From Peter Bala, Mar 01 2022 : (Start)
Equals 3*Sum_{n >= 0} (1/(4*n+1) + 1/(4*n-3))*binomial(1/2,n). Cf. A290570.
Equals hypergeom([-1/2, 3/4, -3/4], [-1/4, 5/4], -1).
Equals 2*hypergeom([1/4, 3/4], [5/4], 1) = (16/5)*hypergeom([-1/4, -3/4], [5/4], 1). (End)
Equals 2 * A093341. - R. J. Mathar, Dec 08 2023
From Peter Bala, Dec 06 2024: (Start)
Equals Pi*hypergeom([1/2, 1/2], [1], 1/2).
Equals 2*Integral_{x = 0..Pi/2} 1/sqrt(1 - (1/2)*sin^2(x)) dx. See Rouse. (End)

A224268 Decimal expansion of Product_{n>=1} (1 - 1/(4n+1)^2).

Original entry on oeis.org

9, 2, 7, 0, 3, 7, 3, 3, 8, 6, 5, 0, 6, 8, 5, 9, 5, 9, 2, 1, 6, 9, 2, 5, 1, 7, 3, 5, 9, 7, 6, 3, 0, 0, 2, 3, 1, 0, 8, 7, 9, 9, 4, 1, 1, 7, 6, 0, 8, 8, 3, 4, 5, 2, 7, 9, 2, 9, 6, 4, 0, 2, 2, 5, 2, 8, 0, 1, 0, 8, 8, 8, 4, 1, 9, 0, 5, 9, 9, 8, 9, 1, 7, 8, 6, 3, 5
Offset: 0

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Examples

			0.9270373386506859592169251735976300231087994117608834527929640225280...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Cf. product(1-1/(4n+r)^2, n>=1): A096427 (r=-1), A112628 (r=0), A179587-1 (r=2).

Programs

  • Mathematica
    RealDigits[N[Product[1 - 1/(4 n + 1)^2, {n, 1, Infinity}], 90]][[1]] (* or, by the formula: *) RealDigits[Gamma[1/4]^2/(8 Sqrt[Pi]), 10, 90][[1]]
  • PARI
    prodnumrat(1 - 1/(4*n+1)^2, 1) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals Gamma(1/4)^2/(8*sqrt(Pi)) = L/(4*sqrt(2)), where L is the Lemniscate constant (A064853).
From Peter Bala, Feb 26 2019: (Start)
C = (Pi/4)*( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (-1)^m*2^(2*m+1)/Catalan(m) * Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ), for m = 0,1,2,....
C = Integral_{x = 0..1} 1/sqrt(1 + x^4) dx.
C = (1/sqrt(2))*Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
C = (3/2)*Integral_{x = 0..1} sqrt(1 + x^4) dx - sqrt(2)/2.
C = (1/8)*Integral_{x = 0..1} 1/(x - x^2)^(3/4) dx.
C = Sum_{n >= 0} binomial(-1/2,n)/(4*n + 1) = Sum_{n >= 0} binomial(2*n,n)/4^n * 1/(4*n + 1).
C = (1/2)*Sum_{n >= 0} (-1)^n*binomial(-3/4,n)/(4*n + 1).
Continued fraction: 1 - 1/(5 + 20/(1 + 30/(3 + ... + (4*n)*(4*n + 1)/(1 + (4*n + 1)*(4*n + 2)/(3 + ... ))))).
C = A085565/sqrt(2). C = Pi/(4*A096427). (End)
Equals A093341/2 = A327996^2. - Hugo Pfoertner, Oct 31 2024

A064853 Decimal expansion of the Lemniscate constant.

Original entry on oeis.org

5, 2, 4, 4, 1, 1, 5, 1, 0, 8, 5, 8, 4, 2, 3, 9, 6, 2, 0, 9, 2, 9, 6, 7, 9, 1, 7, 9, 7, 8, 2, 2, 3, 8, 8, 2, 7, 3, 6, 5, 5, 0, 9, 9, 0, 2, 8, 6, 3, 2, 4, 6, 3, 2, 5, 6, 3, 3, 6, 4, 3, 4, 0, 7, 6, 0, 1, 5, 8, 1, 1, 7, 4, 1, 4, 0, 8, 2, 8, 5, 0, 0, 4, 6, 0, 5, 9, 1, 0, 6, 5, 9, 2, 2, 8, 5, 8, 1, 8, 6, 8, 9
Offset: 1

Views

Author

Eric W. Weisstein, Sep 22 2001

Keywords

Examples

			5.244115108584239620929679...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(1/4)^2/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    First@RealDigits[ N[ Gamma[ 1/4 ]^2/Sqrt[ 2 Pi ], 102 ] ]
  • PARI
    { allocatemem(932245000); default(realprecision, 5080); x=gamma(1/4)^2/sqrt(2*Pi); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b064853.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    gamma(1/2)*gamma(1/4)/gamma(3/4) \\ Charles R Greathouse IV, Oct 29 2021
    

Formula

Equals Gamma(1/4)^2/sqrt(2*Pi). - G. C. Greubel, Oct 07 2018
Equals 2*A062539 = 4*A085565. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 23 2022: (Start)
Equals 4*Integral_{x=0..Pi/2} 1/sqrt(2*(1 - (1/2)*sin(x)^2)) dx [Gauss, 1799] (see Faulhuber et al.).
Equals 2*sqrt(2)*A093341. (End)

A163973 Decimal expansion of Van der Pauw's constant = Pi/log(2).

Original entry on oeis.org

4, 5, 3, 2, 3, 6, 0, 1, 4, 1, 8, 2, 7, 1, 9, 3, 8, 0, 9, 6, 2, 7, 6, 8, 2, 9, 4, 5, 7, 1, 6, 6, 6, 6, 8, 1, 0, 1, 7, 1, 8, 6, 1, 4, 6, 7, 7, 2, 3, 7, 9, 5, 5, 8, 4, 1, 8, 6, 0, 1, 6, 5, 4, 7, 9, 4, 0, 6, 0, 0, 9, 5, 3, 7, 2, 1, 3, 0, 5, 1, 0, 2, 2, 5, 9, 0, 8, 3, 8, 7, 9, 6, 0, 4, 0, 1, 6, 0, 8, 9, 6, 5, 3
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

Van der Pauw developed a method for measuring the sheet resistance of a four-terminal conducting sheet of arbitrary shape. Assuming the terminals to be point contacts at the periphery of the structure, he proved a general theorem that yields an analytical expression for the sheet resistance Rs. In the special case that the structure is invariant for a rotation of ninety degrees, the formula of Van der Pauw is Rs = (Pi/log(2))*(V/I).
A general theorem for the sheet resistance Rs of a Van der Pauw structure with finite contacts that is invariant for a rotation of ninety degrees was proved by Versnel. His theorem states that Rs = [K(k1)/K'(k1) - K(k2)/(2*K'(k2))]^(-1)*(V/I) with K(k) and K'(k) complete elliptic integrals with modulus k (Abramowitz and Stegun use parameter m = k^2).
Versnel found, with a little help from the author, expressions for Rs = C(d)*(V/I) for several Van der Pauw structures if d, the ratio of the sum of the lengths of the contacts and the length of the boundary of the sheet, tends to zero, see the formulas (first two terms are given). For point contacts, i.e., d = 0, Van der Pauw's constant appears.

Examples

			4.5323601418271938
		

Crossrefs

Cf. A000796 (Pi), A002162 (log(2)), A093341 (K), A131223 (2*Pi/log(2)), A259679 (log(2)/(4*Pi^2)).

Programs

Formula

1) Circle with contacts in the middle of each side:
C(d) = Pi/log(2) + (Pi^3/(64*(log(2))^2))*d^2
2) Square with contacts in the middle of each side:
C(d) = Pi/log(2) + (Pi*K^2/(8*(log(2))^2))*d^2
3) Square with complementary contacts:
C(d) = Pi/log(2) + (Pi*K^4/(64*(log(2))^2))*d^4
with K = K(sqrt(2)/2) = 1.8540746773.
4) Greek cross with contacts at the cross ends:
C(d) = Pi/log(2) + 2*Pi/(log(2))^2*exp(Pi/2-Pi/d)
5) Greek cross with contacts between the cross ends:
C(d) = Pi/log(2) + ((Pi/(2^12*log(2)^2)*((-3/4)!/(-1/4)!)^8))*d^4

A249282 Decimal expansion of K(1/4), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

1, 6, 8, 5, 7, 5, 0, 3, 5, 4, 8, 1, 2, 5, 9, 6, 0, 4, 2, 8, 7, 1, 2, 0, 3, 6, 5, 7, 7, 9, 9, 0, 7, 6, 9, 8, 9, 5, 0, 0, 8, 0, 0, 8, 9, 4, 1, 4, 1, 0, 8, 9, 0, 4, 4, 1, 1, 9, 9, 4, 8, 2, 9, 7, 8, 9, 3, 4, 3, 3, 7, 0, 2, 8, 8, 2, 3, 4, 6, 7, 6, 0, 4, 0, 6, 4, 5, 0, 9, 7, 3, 9, 3, 6, 6, 1, 2, 5, 7, 0, 3, 3
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			1.685750354812596042871203657799076989500800894141089...
		

Crossrefs

Cf. A093341 (K(1/2)), A249283 (K(3/4)), A000796, A084895.

Programs

Formula

From Paul D. Hanna, Mar 25 2024: (Start)
K(1/4) = Pi/2 * Sum_{n>=0} binomial(2*n,n)^2/16^n * (1/4)^n.
K(1/4) = Pi/2 * sqrt( Sum_{n>=0} binomial(2*n,n)^3/16^n * (m*(1-m))^n ), where m = 1/4. (End)
Equals Pi/agm(1, 3) = A000796 / A084895. - Amiram Eldar, Apr 28 2025

A225119 Decimal expansion of Integral_{x=0..Pi/2} sin(x)^(3/2) dx.

Original entry on oeis.org

8, 7, 4, 0, 1, 9, 1, 8, 4, 7, 6, 4, 0, 3, 9, 9, 3, 6, 8, 2, 1, 6, 1, 3, 1, 9, 6, 6, 3, 0, 3, 7, 3, 1, 3, 7, 8, 9, 4, 2, 5, 1, 6, 5, 0, 4, 7, 7, 2, 0, 7, 7, 2, 0, 9, 3, 8, 9, 4, 0, 5, 6, 7, 9, 3, 3, 5, 9, 6, 8, 6, 2, 3, 5, 6, 8, 0, 4, 7, 5, 0, 0, 7, 6, 7, 6, 5, 1, 7, 7, 6, 5, 3, 8, 0, 9, 6, 9, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Apr 29 2013

Keywords

Examples

			0.87401918476403993682161319663037313789425165047720772093894...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 195.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant p. 102 and Section 6.1 Gauss' Lemniscate Constant p. 422.

Crossrefs

Programs

  • Maple
    evalf((1/3)*sqrt(2)*EllipticK(1/sqrt(2)), 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[1/3*Sqrt[2]*EllipticK[1/2], 10, 100][[1]]
  • PARI
    sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)) \\ G. C. Greubel, Apr 01 2017
    
  • PARI
    ellK(sqrt(1/2))*sqrt(2)/3 \\ Charles R Greathouse IV, Feb 04 2025

Formula

Equals 1/3 * sqrt(2) * ellipticK(1/2), (defined as in Mathematica).
Equals sqrt(2)/6 * Pi * hypergeom([1/2,1/2],[1],1/2).
Equals gamma(1/4)^2/(6*sqrt(2*Pi)).
Equals sqrt(Pi)*gamma(1/4)/(6*gamma(3/4)).
Equals Integral_{0..1} (1-x^2)^(1/4) dx.
Equals Integral_{0..1} sqrt(1-x^4) dx. - Charles R Greathouse IV, Aug 21 2017
Equals (2/3)*A085565. - Peter Bala, Oct 27 2019
Equals A062539/3. - Hugo Pfoertner, Dec 15 2024

A153396 G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 32, 228, 1726, 13587, 109923, 907499, 7609898, 64609346, 554108863, 4792190298, 41739160686, 365746143064, 3221723465187, 28509044813580, 253295607463902, 2258539046009268, 20203103111671575, 181242298665210280
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 228*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 74*x^3 + 545*x^4 + 4228*x^5 +...
G(x)^3*A(x)^2 = 1 + 5*x + 32*x^2 + 228*x^3 + 1726*x^4 + 13587*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[2k+1,k]/(2k+1) Binomial[4n-k,n-k]3 k/(4n-k), {k,0,n}],{n,20}]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n-k,n-k)*3k/(4n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^3*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(x*F(x)) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(x*H(x)^2) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.
G.f. satisfies: A(-x*A(x)^9) = 1/A(x). - Alexander Burstein, Apr 14 2020
Recurrence: 243*(n-1)*n*(n+1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(147456*n^6 - 1998336*n^5 + 11209920*n^4 - 33294250*n^3 + 55173779*n^2 - 48321229*n + 17452260)*a(n) = 72*(n-1)*n*(3*n - 5)*(3*n - 4)*(127401984*n^9 - 2045067264*n^8 + 14240360448*n^7 - 56278911936*n^6 + 138595592064*n^5 - 219567715966*n^4 + 222542820712*n^3 - 138190518059*n^2 + 47259501167*n - 6683489400)*a(n-1) - 48*(n-1)*(16307453952*n^12 - 351459606528*n^11 + 3428587929600*n^10 - 20001961205760*n^9 + 77643945578496*n^8 - 211031837008384*n^7 + 411217026027200*n^6 - 577827896836090*n^5 + 579810023200127*n^4 - 403994885007838*n^3 + 184802213339825*n^2 - 49548085570200*n + 5838168798000)*a(n-2) + 128*(2*n - 5)*(4*n - 11)*(4*n - 9)*(8*n - 23)*(8*n - 21)*(8*n - 19)*(8*n - 17)*(147456*n^6 - 1113600*n^5 + 3430080*n^4 - 5488810*n^3 + 4779029*n^2 - 2123685*n + 369600)*a(n-3). - Vaclav Kotesovec, Feb 22 2015
a(n) ~ (256/27)^n / n^(5/4) * (3^(1/4)*sqrt(EllipticK(1/sqrt(2)))/(2*Pi)^(3/4) - sqrt(3/(2*Pi))/n^(1/4) + (2/(3*Pi))^(1/4) / sqrt(EllipticK(1/sqrt(2)))/n^(1/2)), where EllipticK(1/sqrt(2)) = A093341 = GAMMA(1/4)^2/(4*(Pi)^(1/2)) = 1.85407467730137191843385... (= EllipticK[1/2] in Mathematica). - Vaclav Kotesovec, Feb 22 2015

A105372 Decimal expansion of Hypergeometric2F1[ -(1/4),3/4,1,1] = sqrt(Pi)/(Gamma[1/4]*Gamma[5/4]).

Original entry on oeis.org

5, 3, 9, 3, 5, 2, 6, 0, 1, 1, 8, 8, 3, 7, 9, 3, 5, 6, 6, 6, 7, 9, 3, 5, 7, 2, 2, 3, 5, 5, 5, 5, 2, 7, 3, 2, 7, 6, 5, 8, 6, 8, 9, 6, 5, 4, 4, 3, 0, 4, 0, 1, 3, 0, 3, 3, 9, 9, 4, 6, 6, 3, 1, 8, 6, 3, 8, 8, 2, 9, 8, 8, 4, 8, 6, 5, 1, 5, 6, 8, 2, 8, 1, 5, 5, 9, 2, 1, 3, 7, 2, 2, 7, 5, 3, 3, 7, 7, 1, 4
Offset: 0

Views

Author

Zak Seidov, Apr 02 2005

Keywords

Comments

This constant appears in solution to an ODE considered in A104996, A104997.

Examples

			0.53935260118837935666793572235555273276586896544304013033994...
		

Crossrefs

Programs

  • Maple
    evalf(1/EllipticK(1/sqrt(2)),120); # Vaclav Kotesovec, Jun 15 2015
  • Mathematica
    RealDigits[1/EllipticK[1/2],10,120][[1]] (* Vaclav Kotesovec, Jun 15 2015 *)
  • PARI
    sqrt(Pi)/(gamma(1/4)*gamma(5/4)) \\ G. C. Greubel, Jan 09 2017

Formula

Hypergeometric2F1[ -(1/4), 3/4, 1, 1] = Sqrt[Pi]/(Gamma[1/4]*Gamma[5/4]).
From Vaclav Kotesovec, Jun 15 2015: (Start)
4*sqrt(Pi)/Gamma(1/4)^2.
1 / EllipticK(1/sqrt(2)) (Maple notation).
1 / EllipticK[1/2] (Mathematica notation).
(End)
Equals Product_{k>=1} (1 + (-1)^k/(2*k)). - Amiram Eldar, Aug 26 2020

Extensions

Last digit corrected by Vaclav Kotesovec, Jun 15 2015
Showing 1-10 of 15 results. Next