cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000796 Decimal expansion of Pi (or digits of Pi).

Original entry on oeis.org

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Archimedes's constant.
Ratio of a circle's circumference to its diameter.
Also area of a circle with radius 1.
Also surface area of a sphere with diameter 1.
A useful mnemonic for remembering the first few terms: How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics ...
Also ratio of surface area of sphere to one of the faces of the circumscribed cube. Also ratio of volume of a sphere to one of the six inscribed pyramids in the circumscribed cube. - Omar E. Pol, Aug 09 2012
Also surface area of a quarter of a sphere of radius 1. - Omar E. Pol, Oct 03 2013
Also the area under the peak-shaped even function f(x)=1/cosh(x). Proof: for the upper half of the integral, write f(x) = (2*exp(-x))/(1+exp(-2x)) = 2*Sum_{k>=0} (-1)^k*exp(-(2k+1)*x) and integrate term by term from zero to infinity. The result is twice the Gregory series for Pi/4. - Stanislav Sykora, Oct 31 2013
A curiosity: a 144 X 144 magic square of 7th powers was recently constructed by Toshihiro Shirakawa. The magic sum = 3141592653589793238462643383279502884197169399375105, which is the concatenation of the first 52 digits of Pi. See the MultiMagic Squares link for details. - Christian Boyer, Dec 13 2013 [Comment revised by N. J. A. Sloane, Aug 27 2014]
x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 25 2013
Also diameter of a sphere whose surface area equals the volume of the circumscribed cube. - Omar E. Pol, Jan 13 2014
From Daniel Forgues, Mar 20 2015: (Start)
An interesting anecdote about the base-10 representation of Pi, with 3 (integer part) as first (index 1) digit:
358 0
359 3
360 6
361 0
362 0
And the circle is customarily subdivided into 360 degrees (although Pi radians yields half the circle)...
(End)
Sometimes referred to as Archimedes's constant, because the Greek mathematician computed lower and upper bounds of Pi by drawing regular polygons inside and outside a circle. In Germany it was called the Ludolphian number until the early 20th century after the Dutch mathematician Ludolph van Ceulen (1540-1610), who calculated up to 35 digits of Pi in the late 16th century. - Martin Renner, Sep 07 2016
As of the beginning of 2019 more than 22 trillion decimal digits of Pi are known. See the Wikipedia article "Chronology of computation of Pi". - Harvey P. Dale, Jan 23 2019
On March 14, 2019, Emma Haruka Iwao announced the calculation of 31.4 trillion digits of Pi using Google Cloud's infrastructure. - David Radcliffe, Apr 10 2019
Also volume of three quarters of a sphere of radius 1. - Omar E. Pol, Aug 16 2019
On August 5, 2021, researchers from the University of Applied Sciences of the Grisons in Switzerland announced they had calculated 62.8 trillion digits. Guinness World Records has not verified this yet. - Alonso del Arte, Aug 23 2021
The Hermite-Lindemann (1882) theorem states, that if z is a nonzero algebraic number, then e^z is a transcendent number. The transcendence of Pi then results from Euler's relation: e^(i*Pi) = -1. - Peter Luschny, Jul 21 2023
The 10000 words of the book "Not A Wake" by Michael Keith, written in Pilish, match in length the first 10000 digits of Pi. - Paolo Xausa, Aug 07 2025

Examples

			3.1415926535897932384626433832795028841971693993751058209749445923078164062\
862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819...
		

References

  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • J. Arndt & C. Haenel, Pi Unleashed, Springer NY 2001.
  • P. Beckmann, A History of Pi, Golem Press, Boulder, CO, 1977.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 396.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 237-239.
  • J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997.
  • P. Eyard and J.-P. Lafon, The Number Pi, Amer. Math. Soc., 2004.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.4.
  • Le Petit Archimede, Special Issue On Pi, Supplement to No. 64-5, May 1980 ADCS Amiens.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equations 1:7:1, 1:7:2 at pages 12-13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 48-55.

Crossrefs

Cf. A001203 (continued fraction).
Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), this sequence (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A224750 (b=26), A224751 (b=27), A060707 (b=60). - Jason Kimberley, Dec 06 2012
Decimal expansions of expressions involving Pi: A002388 (Pi^2), A003881 (Pi/4), A013661 (Pi^2/6), A019692 (2*Pi=tau), A019727 (sqrt(2*Pi)), A059956 (6/Pi^2), A060294 (2/Pi), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8), A163973 (Pi/log(2)).
Cf. A001901 (Pi/2; Wallis), A002736 (Pi^2/18; Euler), A007514 (Pi), A048581 (Pi; BBP), A054387 (Pi; Newton), A092798 (Pi/2), A096954 (Pi/4; Machin), A097486 (Pi), A122214 (Pi/2), A133766 (Pi/4 - 1/2), A133767 (5/6 - Pi/4), A166107 (Pi; MGL).

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a000796 n = a000796_list (n + 1) !! (n + 1)
    a000796_list len = map digitToInt $ show $ machin' `div` (10 ^ 10) where
       machin' = 4 * (4 * arccot 5 unity - arccot 239 unity)
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
          | term == 0 = summa
          | otherwise = arccot'
            x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
          where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Haskell
    -- See Niemeijer link and also Gibbons link.
    a000796 n = a000796_list !! (n-1) :: Int
    a000796_list = map fromInteger $ piStream (1, 0, 1)
       [(n, a*d, d) | (n, d, a) <- map (\k -> (k, 2 * k + 1, 2)) [1..]] where
       piStream z xs'@(x:xs)
         | lb /= approx z 4 = piStream (mult z x) xs
         | otherwise = lb : piStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 3
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jul 14 2013, Jun 12 2013
    
  • Macsyma
    py(x) := if equal(6,6+x^2) then 2*x else (py(x:x/3),3*%%-4*(%%-x)^3); py(3.); py(dfloat(%)); block([bfprecision:35], py(bfloat(%))) /* Bill Gosper, Sep 09 2002 */
    
  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi))); // Bruno Berselli, Mar 12 2013
    
  • Maple
    Digits := 110: Pi*10^104:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 29 2019
  • Mathematica
    RealDigits[ N[ Pi, 105]] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n], {n, 1, 102}] (* Joan Ludevid, Jun 22 2022; easy to compute a(10000000)=7 with this function; requires Mathematica 12.0+ *)
  • PARI
    { default(realprecision, 20080); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b000796.txt", n, " ", d)); } \\ Harry J. Smith, Apr 15 2009
    
  • PARI
    A796=[]; A000796(n)={if(n>#A796, localprec(n*6\5+29); A796=digits(Pi\.1^(precision(Pi)-3))); A796[n]} \\ NOTE: as the other programs, this returns the n-th term of the sequence, with n = 1, 2, 3, ... and not n = 1, 0, -1, -2, .... - M. F. Hasler, Jun 21 2022
    
  • PARI
    first(n)= default(realprecision, n+10); digits(floor(Pi*10^(n-1))) \\ David A. Corneth, Jun 21 2022
    
  • PARI
    lista(nn, p=20)= {my(u=10^(nn+p+1), f(x, u)=my(n=1, q=u\x, r=q, s=1, t); while(t=(q\=(x*x))\(n+=2), r+=(s=-s)*t); r*4); digits((4*f(5, u)-f(239, u))\10^(p+2)); } \\ Machin-like, with p > the maximal number of consecutive 9-digits to be expected (A048940) - Ruud H.G. van Tol, Dec 26 2024
    
  • Python
    from sympy import pi, N; print(N(pi, 1000)) # David Radcliffe, Apr 10 2019
    
  • Python
    from mpmath import mp
    def A000796(n):
        if n >= len(A000796.str): mp.dps = n*6//5+50; A000796.str = str(mp.pi-5/mp.mpf(10)**mp.dps)
        return int(A000796.str[n if n>1 else 0])
    A000796.str = '' # M. F. Hasler, Jun 21 2022
    
  • SageMath
    m=125
    x=numerical_approx(pi, digits=m+5)
    a=[ZZ(i) for i in x.str(skip_zeroes=True) if i.isdigit()]
    a[:m] # G. C. Greubel, Jul 18 2023

Formula

Pi = 4*Sum_{k>=0} (-1)^k/(2k+1) [Madhava-Gregory-Leibniz, 1450-1671]. - N. J. A. Sloane, Feb 27 2013
From Johannes W. Meijer, Mar 10 2013: (Start)
2/Pi = (sqrt(2)/2) * (sqrt(2 + sqrt(2))/2) * (sqrt(2 + sqrt(2 + sqrt(2)))/2) * ... [Viete, 1593]
2/Pi = Product_{k>=1} (4*k^2-1)/(4*k^2). [Wallis, 1655]
Pi = 3*sqrt(3)/4 + 24*(1/12 - Sum_{n>=2} (2*n-2)!/((n-1)!^2*(2*n-3)*(2*n+1)*2^(4*n-2))). [Newton, 1666]
Pi/4 = 4*arctan(1/5) - arctan(1/239). [Machin, 1706]
Pi^2/6 = 3*Sum_{n>=1} 1/(n^2*binomial(2*n,n)). [Euler, 1748]
1/Pi = (2*sqrt(2)/9801) * Sum_{n>=0} (4*n)!*(1103+26390*n)/((n!)^4*396^(4*n)). [Ramanujan, 1914]
1/Pi = 12*Sum_{n>=0} (-1)^n*(6*n)!*(13591409 + 545140134*n)/((3*n)!*(n!)^3*(640320^3)^(n+1/2)). [David and Gregory Chudnovsky, 1989]
Pi = Sum_{n>=0} (1/16^n) * (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)). [Bailey-Borwein-Plouffe, 1989] (End)
Pi = 4 * Sum_{k>=0} 1/(4*k+1) - 1/(4*k+3). - Alexander R. Povolotsky, Dec 25 2008
Pi = 4*sqrt(-1*(Sum_{n>=0} (i^(2*n+1))/(2*n+1))^2). - Alexander R. Povolotsky, Jan 25 2009
Pi = Integral_{x=-oo..oo} dx/(1+x^2). - Mats Granvik and Gary W. Adamson, Sep 23 2012
Pi - 2 = 1/1 + 1/3 - 1/6 - 1/10 + 1/15 + 1/21 - 1/28 - 1/36 + 1/45 + ... [Jonas Castillo Toloza, 2007], that is, Pi - 2 = Sum_{n>=1} (1/((-1)^floor((n-1)/2)*(n^2+n)/2)). - José de Jesús Camacho Medina, Jan 20 2014
Pi = 3 * Product_{t=img(r),r=(1/2+i*t) root of zeta function} (9+4*t^2)/(1+4*t^2) <=> RH is true. - Dimitris Valianatos, May 05 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Pi = Sum_{k>=1} (3^k - 1)*zeta(k+1)/4^k.
Pi = 2*Product_{k>=2} sec(Pi/2^k).
Pi = 2*Integral_{x>=0} sin(x)/x dx. (End)
Pi = 2^{k + 1}*arctan(sqrt(2 - a_{k - 1})/a_k) at k >= 2, where a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2). - Sanjar Abrarov, Feb 07 2017
Pi = Integral_{x = 0..2} sqrt(x/(2 - x)) dx. - Arkadiusz Wesolowski, Nov 20 2017
Pi = lim_{n->oo} 2/n * Sum_{m=1,n} ( sqrt( (n+1)^2 - m^2 ) - sqrt( n^2 - m^2 ) ). - Dimitri Papadopoulos, May 31 2019
From Peter Bala, Oct 29 2019: (Start)
Pi = Sum_{n >= 0} 2^(n+1)/( binomial(2*n,n)*(2*n + 1) ) - Euler.
More generally, Pi = (4^x)*x!/(2*x)! * Sum_{n >= 0} 2^(n+1)*(n+x)!*(n+2*x)!/(2*n+2*x+1)! = 2*4^x*x!^2/(2*x+1)! * hypergeom([2*x+1,1], [x+3/2], 1/2), valid for complex x not in {-1,-3/2,-2,-5/2,...}. Here, x! is shorthand notation for the function Gamma(x+1). This identity may be proved using Gauss's second summation theorem.
Setting x = 3/4 and x = -1/4 (resp. x = 1/4 and x = -3/4) in the above identity leads to series representations for the constant A085565 (resp. A076390). (End)
Pi = Im(log(-i^i)) = log(i^i)*(-2). - Peter Luschny, Oct 29 2019
From Amiram Eldar, Aug 15 2020: (Start)
Equals 2 + Integral_{x=0..1} arccos(x)^2 dx.
Equals Integral_{x=0..oo} log(1 + 1/x^2) dx.
Equals Integral_{x=0..oo} log(1 + x^2)/x^2 dx.
Equals Integral_{x=-oo..oo} exp(x/2)/(exp(x) + 1) dx. (End)
Equals 4*(1/2)!^2 = 4*Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
From Peter Bala, Dec 08 2021: (Start)
Pi = 32*Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9))= 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)).
More generally, it appears that for k = 1,2,3,..., Pi = 16*(2*k)!*Sum_{n >= 1} (-1)^(n+k+1)*n^2/((4*n^2 - 1)* ... *(4*n^2 - (2*k+1)^2)).
Pi = 32*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^2 = 768*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2*(4*n^2 - 9)^2).
More generally, it appears that for k = 0,1,2,..., Pi = 16*Catalan(k)*(2*k)!*(2*k+2)!*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)^2* ... *(4*n^2 - (2*k+1)^2)^2).
Pi = (2^8)*Sum_{n >= 1} (-1)^(n+1)*n^2/(4*n^2 - 1)^4 = (2^17)*(3^5)*Sum_{n >= 2} (-1)^n*n^2*(n^2 - 1)/((4*n^2 - 1)^4*(4*n^2 - 9)^4) = (2^27)*(3^5)*(5^5)* Sum_{n >= 3} (-1)^(n+1)*n^2*(n^2 - 1)*(n^2 - 4)/((4*n^2 - 1)^4*(4*n^2 - 9)^4*(4*n^2 - 25)^4). (End)
For odd n, Pi = (2^(n-1)/A001818((n-1)/2))*gamma(n/2)^2. - Alan Michael Gómez Calderón, Mar 11 2022
Pi = 4/phi + Sum_{n >= 0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
Pi = sqrt(3)*(27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..1} 1/sqrt(x-x^2) dx. - Michal Paulovic, Sep 24 2023
From Peter Bala, Oct 28 2023: (Start)
Pi = 48*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*(6*n + 5)).
More generally, it appears that for k >= 0 we have Pi = A(k) + B(k)*Sum_{n >= 0} (-1)^n/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 5)), where A(k) is a rational approximation to Pi and B(k) = (3 * 2^(3*k+3) * (3*k + 2)!) / (2^(3*k+1) - (-1)^k). The first few values of A(k) for k >= 0 are [0, 256/85, 65536/20955, 821559296/261636375, 6308233216/2008080987, 908209489444864/289093830828075, ...].
Pi = 16/5 - (288/5)*Sum_{n >= 0} (-1)^n * (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 9)).
More generally, it appears that for k >= 0 we have Pi = C(k) + D(k)*Sum_{n >= 0} (-1)^n* (6*n + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 3)), where C(k) and D(k) are rational numbers. The case k = 0 is the Madhava-Gregory-Leibniz series for Pi.
Pi = 168/53 + (288/53)*Sum_{n >= 0} (-1)^n * (42*n^2 + 25*n)/((6*n + 1)*(6*n + 3)*(6*n + 5)*(6*n + 7)).
More generally, it appears that for k >= 1 we have Pi = E(k) + F(k)*Sum_{n >= 0} (-1)^n * (6*(6*k + 1)*n^2 + (24*k + 1)*n)/((6*n + 1)*(6*n + 3)*...*(6*n + 6*k + 1)), where E(k) and F(k) are rational numbers. (End)
From Peter Bala, Nov 10 2023: (Start)
The series representation Pi = 4 * Sum_{k >= 0} 1/(4*k + 1) - 1/(4*k + 3) given above by Alexander R. Povolotsky, Dec 25 2008, is the case n = 0 of the more general result (obtained by the WZ method): for n >= 0, there holds
Pi = Sum_{j = 0.. n-1} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) + 8*(n+1)!*Sum_{k >= 0} 1/((4*k + 1)*(4*k + 3)*...*(4*k + 2*n + 3)).
Letting n -> oo gives the rapidly converging series Pi = Sum_{j >= 0} 2^(j+1)/((2*j + 1)*binomial(2*j,j)) due to Euler.
More generally, it appears that for n >= 1, Pi = 1/(2*n-1)!!^2 * Sum_{j >= 0} (Product_{i = 0..2*n-1} j - i) * 2^(j+1)/((2*j + 1)*binomial(2*j,j)).
For any integer n, Pi = (-1)^n * 4 * Sum_{k >= 0} 1/(4*k + 1 + 2*n) - 1/(4*k + 3 - 2*n). (End)
Pi = Product_{k>=1} ((k^3*(k + 2)*(2*k + 1)^2)/((k + 1)^4*(2*k - 1)^2))^k. - Antonio Graciá Llorente, Jun 13 2024
Equals Integral_{x=0..2} sqrt(8 - x^2) dx - 2 (see Ambrisi and Rizzi). - Stefano Spezia, Jul 21 2024
Equals 3 + 4*Sum_{k>0} (-1)^(k+1)/(4*k*(1+k)*(1+2*k)) (see Wells at p. 53). - Stefano Spezia, Aug 31 2024
Equals 4*Integral_{x=0..1} sqrt(1 - x^2) dx = lim_{n->oo} (4/n^2)*Sum_{k=0..n} sqrt(n^2 - k^2) (see Finch). - Stefano Spezia, Oct 19 2024
Equals Beta(1/2,1/2) (see Shamos). - Stefano Spezia, Jun 03 2025
From Kritsada Moomuang, Jun 18 2025: (Start)
Equals 2 + Integral_{x=0..1} 1/(sqrt(x)*(1 + sqrt(1 - x))) dx.
Equals 2 + Integral_{x=0..1} log(1 + sqrt(1 - x))/sqrt(x) dx. (End)
Pi = 2*arccos(1/phi) + arccos(1/phi^3) = 4*arcsin(1/phi) + 2*arcsin(1/phi^3) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, Jul 02 2025
Pi = Sum_{n >= 0} zeta(2*n)*(2^(2*n - 1) - 1)/2^(4*n - 3). - Andrea Pinos, Jul 29 2025

Extensions

Additional comments from William Rex Marshall, Apr 20 2001

A131223 Decimal expansion of 2*Pi/log(2).

Original entry on oeis.org

9, 0, 6, 4, 7, 2, 0, 2, 8, 3, 6, 5, 4, 3, 8, 7, 6, 1, 9, 2, 5, 5, 3, 6, 5, 8, 9, 1, 4, 3, 3, 3, 3, 3, 6, 2, 0, 3, 4, 3, 7, 2, 2, 9, 3, 5, 4, 4, 7, 5, 9, 1, 1, 6, 8, 3, 7, 2, 0, 3, 3, 0, 9, 5, 8, 8, 1, 2, 0, 1, 9, 0, 7, 4, 4, 2, 6, 1, 0, 2, 0, 4, 5, 1, 8, 1, 6, 7, 7, 5, 9, 2, 0, 8, 0, 3, 2, 1, 7, 9, 3, 0, 6, 1
Offset: 1

Views

Author

Jonathan Sondow, Jun 19 2007

Keywords

Comments

Imaginary part of the first complex zero of the alternating zeta function. The pair a=1, b=2*Pi/log(2) is a counterexample to the incorrect reformulation of the Riemann Hypothesis in J. Havil's book Gamma: Exploring Euler's Constant. See Sondow (2012).
Also the Bekenstein bound in natural (Planck) units: the information (in bits) contained in a system with mass m and radius r is at most this constant times m*r. - Charles R Greathouse IV, Aug 19 2015

Examples

			9.0647202836543...
		

References

  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003, p. 207.

Crossrefs

Cf. A000796 = Pi, A002162 = log(2), A019692 = 2*Pi, A131224, A163973 = Pi/log(2).

Programs

A284983 Decimal expansion of log(2)/Pi.

Original entry on oeis.org

2, 2, 0, 6, 3, 5, 6, 0, 0, 1, 5, 2, 6, 5, 1, 5, 9, 3, 3, 9, 6, 4, 5, 6, 4, 3, 2, 1, 1, 7, 9, 9, 7, 6, 9, 0, 9, 8, 2, 6, 8, 9, 7, 4, 8, 7, 2, 9, 6, 5, 5, 4, 7, 0, 4, 8, 9, 2, 6, 3, 2, 3, 3, 7, 0, 7, 1, 2, 1, 7, 6, 7, 0, 4, 6, 6, 8, 6, 6, 8, 2, 4, 9, 7, 9, 9, 3, 1, 1, 1, 8, 5, 3, 9, 6, 7, 5
Offset: 0

Views

Author

Terry D. Grant, Apr 06 2017

Keywords

Examples

			0.2206356001526515933964564321...
		

Crossrefs

Cf. A118858 (log(2)/(Pi^2)), A163973 (Pi/log(2)), A131223 (2*Pi/log(2)).
Cf. A000796 (Pi), A002162 (log(2)), A185361 (2^(1/Pi)).

Programs

Formula

Equals 1/A163973.
Equals log(A185361). - Amiram Eldar, Nov 24 2020
Equals Integral_{z>=0} Pi*z*sech(Pi*z)^2. - Peter Luschny, Aug 03 2021

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Feb 04 2025

A185280 Decimal expansion of a constant appearing in the solution of Polya's 2D drunkard problem.

Original entry on oeis.org

8, 8, 2, 5, 4, 2, 4, 0, 0, 6, 1, 0, 6, 0, 6, 3, 7, 3, 5, 8, 5, 8, 2, 5, 7, 2, 8, 4, 7, 1, 9, 9, 0, 7, 6, 3, 9, 3, 0, 7, 5, 8, 9, 9, 4, 9, 1, 8, 6, 2, 1, 8, 8, 1, 9, 5, 7, 0, 5, 2, 9, 3, 4, 8, 2, 8, 4, 8, 7, 0, 6, 8, 1, 8, 6, 7, 4, 6, 7, 2, 9, 9, 9, 1, 9, 7, 2, 4, 4, 7, 4, 1, 5, 8, 7, 0, 2, 2, 3, 5, 5, 4, 5, 9, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 23 2013

Keywords

Examples

			0.882542400610606373585825728471990763930758994918621881957052934828487068186...
		

Crossrefs

Programs

  • Mathematica
    1+(4*Log[2]-Pi)/Pi // N[#, 100]& // RealDigits // First
  • PARI
    4*log(2)/Pi \\ Michel Marcus, Jul 28 2016

Formula

1 + Sum_{n>=1} binomial(2*n, n)^2/16^n - 1/(Pi*n).
Equals 1 + (4*log(2) - Pi)/Pi.
Equals 4*log(2)/Pi. - Michel Marcus, Jul 28 2016

Extensions

a(99) corrected by Georg Fischer, Jul 12 2021

A259679 Lampard's constant, decimal expansion of log(2)/(4*Pi^2).

Original entry on oeis.org

0, 1, 7, 5, 5, 7, 6, 2, 3, 1, 9, 3, 1, 7, 0, 7, 1, 9, 1, 0, 2, 2, 3, 4, 6, 4, 9, 8, 7, 4, 2, 4, 9, 2, 5, 2, 4, 0, 8, 2, 1, 9, 1, 3, 3, 1, 1, 0, 8, 1, 5, 6, 3, 5, 3, 4, 4, 3, 5, 8, 5, 9, 4, 5, 5, 7, 0, 6, 2, 4, 1, 0, 3, 3, 4, 2, 4, 2, 1, 3, 3, 5, 0, 3, 5, 5, 0, 4, 2, 3, 3, 9, 5, 1, 8, 3, 3, 5, 0, 2, 3, 5, 8, 1, 9
Offset: 0

Views

Author

Johannes W. Meijer, Jul 03 2015

Keywords

Comments

Lampard dealt in a paper, see the links, with the calculation of internal cross capacitances of cylinders under certain conditions of symmetry. Van der Pauw generalized Lampard's results with the formula exp(-4*Pi^2*Cab,cd) + exp(-4*Pi^2*Cbc,da) = 1, see the links. Van der Pauw observed that in Lampard's case of symmetry, the two capacitances Cab,cd and Cbc,da are mutually equal, and hence are both equal to C = log(2)/(4*Pi^2) independently of the size or shape of the cross-section, which is Lampard's theorem.
Lampard's constant is closely related to Van der Pauw's constant A163973.
This constant was named after the Australian professor of electrical engineering Douglas Geoffrey Lampard (1927 - 1994). - Amiram Eldar, Dec 03 2020

Examples

			0.0175576231931707191...
		

Crossrefs

Cf. A163973 (Pi/log(2)), A118858 (log(2)/Pi^2), A000796 (Pi), A002162 (log(2)), A002388 (Pi^2), A092742 (1/Pi^2).

Programs

Formula

C = log(2)/(4*Pi^2).

A369500 Decimal expansion of Sum_{k=-oo..oo} 1/(2^(k/2)+2^(-k/2)).

Original entry on oeis.org

4, 5, 3, 2, 3, 6, 0, 1, 4, 1, 8, 3, 4, 9, 6, 8, 7, 0, 2, 1, 4, 2, 4, 6, 8, 9, 8, 7, 9, 2, 8, 9, 6, 4, 7, 3, 7, 8, 6, 9, 7, 3, 8, 6, 7, 7, 3, 7, 9, 1, 1, 8, 4, 2, 4, 8, 0, 2, 7, 3, 0, 0, 3, 2, 0, 5, 5, 5, 0, 3, 6, 4, 8, 8, 3, 6, 7, 1, 5, 3, 5, 8, 2, 6, 2, 5, 4, 2, 0, 3, 0, 9, 1, 2, 6, 2, 6, 0, 6, 2, 1, 6, 5, 1, 7
Offset: 1

Views

Author

Amiram Eldar, Jan 25 2024

Keywords

Comments

Larger than Pi/log(2) by less than 10^(-11).

Examples

			4.5323601418349687021424689879289647378697386773791184248...
		

Crossrefs

Cf. A163973.

Programs

  • Mathematica
    RealDigits[Chop[N[Sum[1/(2^(k/2) + 2^(-k/2)), {k, -Infinity, Infinity}], 120]]][[1]]
  • PARI
    (Pi/log(2)) * (1 + 2 * sumpos(k = 1, 1/cosh(2*k*Pi^2/log(2))))

Formula

Equals (Pi/log(2)) * (1 + 2 * Sum_{k>=1} sech(2*k*Pi^2/log(2))).
Showing 1-6 of 6 results.