A212308 Numbers with no proper divisor that is not in an arithmetic progression of at least three proper divisors.
Keywords
Examples
36 appears in this sequence because its proper divisors are 1, 2, 3, 4, 6, 9, 12 and 18, each of which appears in at least one of the following arithmetic progressions of at least three proper divisors of 36: {1, 2, 3, 4}, {3, 6, 9, 12}, {6, 12, 18}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local S,D,tau,a,b; S:= numtheory:-divisors(n) minus {n}; D:= sort(convert(S,list)); tau:= nops(D); for a from 1 to tau-2 do for b from a+1 to tau-1 do if member(2*D[b]-D[a],D) then S:= S minus {D[a],D[b],2*D[b]-D[a]}; if S = {} then return true fi; fi od od; false; end proc: filter(1):= true: select(filter, [$1..1000]); # Robert Israel, Apr 13 2020
-
Mathematica
filterQ[n_] := Module[{S, D, tau, a, b}, S = Most @ Divisors[n]; D = S; tau = Length[D]; For[a = 1, a <= tau - 2, a++, For[b = a + 1, b <= tau - 1, b++, If [MemberQ[D, 2 D[[b]] - D[[a]]], S = S ~Complement~ {D[[a]], D[[b]], 2 D[[b]] - D[[a]]}; If[S == {}, Return[True]]]]]; False]; filterQ[1] = True; Select[Range[1000], filterQ] (* Jean-François Alcover, Sep 26 2020, after Robert Israel *)
Comments