A320588 Derangements of {1,2,...,n} (n >= 2) in lexicographic order.
21, 231, 312, 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321, 21453, 21534, 23154, 23451, 23514, 24153, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34152, 34251, 34512, 34521, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512
Offset: 2
Examples
Triangle begins: 21; 231, 312; 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321; 21453, 21534, 23154, 23451, 23514, 24153, 24513, 24531, 25134, ... ... From _David A. Corneth_, Nov 15 2018: (Start) 43512 is in the sequence because no digit is equal to the index of the digit in the number (with offset 1). 43125 is not in the sequence because 5 is at the fifth position. (End)
Programs
-
Mathematica
Needs["Combinatorica`"]; Flatten @ Table[FromDigits /@ Derangements [Table[i, {i, n}]], {n, 9}] (* For first 150504 terms, Amiram Eldar, Nov 15 2018 after Zak Seidov at A030299 *)
-
Perl
use ntheory ":all"; my(@L,@d); do { @d=(1..$); forderange { push @L,join"",@d[@]; } $; } for 2..6; say join ",",@L; # _Dana Jacobsen, Nov 15 2018
Comments