A376048 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} = 3,1,4,1,5,... are the digits of Pi (cf. A000796).
4, 5, 81, 1621, 13130101, 310319170452181, 21399552788917656689963823241, 1373822578697020375503379392874191898311737749943783762521
Offset: 1
References
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..12
Crossrefs
Programs
-
Maple
For Maple code for all these sequences, see A376056.
Formula
a(n+1) = b(n+1)*A376049(n) + 1.
Comments