A084895 Decimal expansion of agm(1, 3), the arithmetic-geometric mean of 1 and 3.
1, 8, 6, 3, 6, 1, 6, 7, 8, 3, 2, 4, 4, 8, 9, 6, 5, 4, 2, 3, 5, 5, 6, 8, 9, 0, 3, 1, 0, 2, 4, 2, 7, 0, 5, 9, 5, 1, 5, 7, 5, 3, 2, 8, 5, 6, 8, 2, 6, 8, 5, 3, 7, 2, 2, 2, 2, 0, 4, 4, 1, 2, 2, 6, 9, 7, 8, 3, 2, 5, 7, 9, 4, 5, 7, 9, 3, 5, 7, 2, 2, 3, 4, 1, 2, 7, 7, 7, 7, 9, 6, 6, 1, 4, 7, 2, 7, 7, 0, 9, 8, 4
Offset: 1
Examples
1.8636167832448965423556890310242705951575328568268537222204412269783257945...
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean.
- Wikipedia, Arithmetic-geometric mean.
Programs
-
Maple
evalf(GaussAGM(1, 3), 144); # Alois P. Heinz, Jul 04 2023
-
Mathematica
RealDigits[ArithmeticGeometricMean[1, 3], 10, 120][[1]] (* Vincenzo Librandi, Mar 12 2015 *) RealDigits[N[Pi/EllipticK[1/4], 102]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
-
PARI
agm(1, 3) \\ Michel Marcus, Jun 02 2019
-
PARI
Pi/ellK(1/2) \\ Charles R Greathouse IV, Feb 04 2025
Comments