cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084895 Decimal expansion of agm(1, 3), the arithmetic-geometric mean of 1 and 3.

Original entry on oeis.org

1, 8, 6, 3, 6, 1, 6, 7, 8, 3, 2, 4, 4, 8, 9, 6, 5, 4, 2, 3, 5, 5, 6, 8, 9, 0, 3, 1, 0, 2, 4, 2, 7, 0, 5, 9, 5, 1, 5, 7, 5, 3, 2, 8, 5, 6, 8, 2, 6, 8, 5, 3, 7, 2, 2, 2, 2, 0, 4, 4, 1, 2, 2, 6, 9, 7, 8, 3, 2, 5, 7, 9, 4, 5, 7, 9, 3, 5, 7, 2, 2, 3, 4, 1, 2, 7, 7, 7, 7, 9, 6, 6, 1, 4, 7, 2, 7, 7, 0, 9, 8, 4
Offset: 1

Views

Author

Eric W. Weisstein, Jun 10 2003

Keywords

Examples

			1.8636167832448965423556890310242705951575328568268537222204412269783257945...
		

Crossrefs

Cf. A068521 (agm(1,2)), A084896 (agm(1,4)), A084897 (agm(1,5)), A000796, A249282.

Programs

Formula

Equals Pi/EllipticK(1/4) = A000796 / A249282. - Amiram Eldar, Apr 28 2025

A370543 Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -1, 17, -433, 20321, -1584289, 179967473, -28151779537, 5812048858049, -1529741412486721, 499975227342256337, -198676311845589783793, 94327947921149101192481, -52736138158762405338195169, 34291374178966525773142501553, -25660133983889999165774819970577
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: C(x) = 1 - x^2/2! + 17*x^4/4! - 433*x^6/6! + 20321*x^8/8! - 1584289*x^10/10! + 179967473*x^12/12! - 28151779537*x^14/14! + ...
where C(x) = cn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (cn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370544 (dn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] cn(x, 2).
    cn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiCN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    cn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiCN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* C(x) = Jacobi Elliptic Function cn(x,k) at k = 2: */
    {a(n) = my(k=2,C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(C,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^k for n >= 1, with a(0) = 1.
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) C(x) = cn(x,k) at k = 2.
(2.a) C(x) = dn(2*x, 1/2).
(2.b) C(x) = (4 - 2*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) C(x) = 1 - Integral sqrt(1 - C(x)^2) * sqrt(4*C(x)^2 - 3) dx.
(4) C(x) = cos( Integral sqrt(4*C(x)^2 - 3) dx ).
(5.a) C(x) = sqrt(1 - sn(x,2)^2).
(5.b) C(x) = sqrt(3 + dn(x,2)^2) / 2.
O.g.f.: 1/(1 + x/(1 + 4*2^2*x/(1 + 3^2*x/(1 + 4*4^2*x/(1 + 5^2*x/(1 + 4*6^2*x/(1 + 7^2*x/(1 + ...)))))))) = 1 - x + 17*x^2 - 433*x^3 + 20321*x^4 - 1584289*x^5 + ... (continued fraction, see Wall, 94.18, p. 374). - [See formula in A060627 by Peter Bala, Apr 25 2017].
a(n) ~ (-1)^n * 2^(4*n+2) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A249283 Decimal expansion of K(3/4), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

2, 1, 5, 6, 5, 1, 5, 6, 4, 7, 4, 9, 9, 6, 4, 3, 2, 3, 5, 4, 3, 8, 6, 7, 4, 9, 9, 8, 8, 0, 0, 3, 2, 2, 0, 2, 8, 8, 6, 4, 1, 1, 0, 2, 1, 6, 4, 9, 2, 8, 2, 5, 3, 6, 0, 3, 6, 4, 9, 5, 8, 9, 1, 6, 5, 0, 0, 9, 6, 1, 6, 4, 4, 2, 2, 0, 6, 5, 6, 2, 8, 7, 6, 3, 4, 9, 6, 7, 8, 7, 5, 7, 8, 1, 4, 4, 5, 9, 0, 2, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			2.15651564749964323543867499880032202886411021649282536...
		

Crossrefs

Cf. A093341 (K(1/2)), A249282 (K(1/4)), A000796, A068521.

Programs

Formula

Equals Pi/agm(1, 2) = A000796 / A068521. - Amiram Eldar, Apr 28 2025

A370542 Expansion of the Jacobi elliptic function sn(x,k) at k = 2 (odd powers only).

Original entry on oeis.org

1, -5, 73, -2765, 171409, -16145045, 2168436697, -391723265885, 91633164775201, -26955095234906405, 9737498127795037033, -4237907290209405609965, 2187044171819241257792689, -1320533769141977996485790645, 922274662722967857470247551737, -737730926392606318468533810754685
Offset: 0

Views

Author

Paul D. Hanna, Mar 23 2024

Keywords

Examples

			E.g.f.: S(x) = x - 5*x^3/3! + 73*x^5/5! - 2765*x^7/7! + 171409*x^9/9! - 16145045*x^11/11! + 2168436697*x^13/13! - 391723265885*x^15/15! + ...
where S(x) = sn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A000182 (unsigned sn(x,1)), A060628 (sn(x,k)).
Cf. A370543 (cn(x,2)), A370544 (dn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n+1)! * [x^(2*n+1)] sn(x, 2).
    sn_list := proc(k, len) local n; seq((2*n+1)!*coeff(series(JacobiSN(z, k), z,
    2*len + 2), z, 2*n + 1), n = 0..len) end:
    sn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiSN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax] + 1)! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* S(x) = Jacobi Elliptic Function sn(x,k) at k = 2: */
    {a(n) = my(S, k = 2); S = serreverse( intformal( 1/sqrt((1-x^2)*(1-k^2*x^2 +x*O(x^(2*n+2)) ) ) ));
    (2*n+1)!*polcoeff(S,2*n+1)}
    for(n=0,20, print1( a(n), ", ") );

Formula

a(n) = (-1)^n * Sum_{k=0..n} A060628(n,k)*4^k for n >= 0.
E.g.f. S(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) S(x) = sn(x,k) at k = 2.
(2.a) S(x) = sn(2*x,1/2)/2.
(2.b) S(x) = sn(x,1/2) * cn(x,1/2) * dn(x,1/2) / (1 - sn(x,1/2)^4/4).
(3.a) S(x) = Series_Reversion( Integral 1/sqrt( (1-x^2)*(1-4*x^2) ) dx ).
(3.b) S(x) = Integral sqrt(1 - S(x)^2) * sqrt(1 - 4*S(x)^2) dx.
(4.a) S(x) = sin( Integral sqrt(1 - 4*S(x)^2) dx ).
(4.b) S(x) = sin( 2 * Integral sqrt(1 - S(x)^2) dx ) / 2.
(5.a) S(x) = sqrt(1 - cn(x,2)^2).
(5.b) S(x) = sqrt(1 - dn(x,2)^2) / 2.
O.g.f.: x/(1 + 5*x - 4*1*2^2*3*x^2/(1 + 5*3^2*x - 4*3*4^2*5*x^2/(1 + 5*5^2*x - 4*5*6^2*7*x^2/(1 + 5*7^2*x - 4*7*8^2*9*x^2/(1 + 5*9^2*x - ...))))) = x - 5*x^2 + 73*x^3 - 2765*x^4 + 171409*x^5 - 16145045*x^6 + ... (continued fraction, see Wall, 94.17, p. 374).
a(n) ~ (-1)^n * 2^(4*n+4) * agm(1,2)^(2*n+2) * n^(2*n + 3/2) / (Pi^(2*n + 3/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A370544 Expansion of the Jacobi elliptic function dn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -4, 32, -832, 41216, -3168256, 359518208, -56319950848, 11624409595904, -3059387770077184, 999955757611876352, -397353151288859164672, 188655750511199441125376, -105472284295853235792510976, 68582751548430569936978444288, -51320267059211655419226235076608
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: D(x) = 1 - 4*x^2/2! + 32*x^4/4! - 832*x^6/6! + 41216*x^8/8! - 3168256*x^10/10! + 359518208*x^12/12! - 56319950848*x^14/14! + ...
where D(x) = dn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (dn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370543 (cn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] dn(x, 2).
    dn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiDN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    dn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiDN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* D(x) = Jacobi Elliptic Function dn(x,k) at k = 2: */
    {a(n) = my(k=2, C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(D,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^(n-k) for n >= 1, with a(0) = 1.
E.g.f. D(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) D(x) = dn(x,k) at k = 2.
(2.a) D(x) = cn(2*x, 1/2).
(2.b) D(x) = (4 - 8*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) D(x) = 1 - Integral sqrt(1 - D(x)^2) * sqrt(3 + D(x)^2) dx.
(4) D(x) = cos( Integral sqrt(3 + D(x)^2) dx ).
(5.a) D(x) = sqrt(1 - 4*sn(x,2)^2).
(5.b) D(x) = sqrt(4*cn(x,2)^2 - 3).
O.g.f. 1/(1 + 4*x/(1 + 2^2*x/(1 + 4*3^2*x/(1 + 4^2*x/(1 + 4*5^2*x/(1 + 6^2*x/(1 + 4*7^2*x/(1 + ...)))))))) = 1 - 4*x + 32*x^2 - 832*x^3 + 41216*x^4 - 3168256*x^5 + ... (continued fraction, see Wall, 94.19, p. 374).
a(n) ~ (-1)^n * 2^(4*n+3) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A338004 Decimal expansion of the angle of association yielding the gyroid relative to Schwarz's D surface.

Original entry on oeis.org

6, 6, 3, 4, 8, 2, 9, 7, 0, 5, 1, 1, 4, 3, 4, 8, 0, 8, 0, 5, 7, 5, 6, 8, 8, 4, 7, 4, 3, 7, 2, 3, 9, 9, 5, 0, 0, 0, 5, 0, 4, 2, 8, 9, 8, 5, 1, 5, 6, 9, 6, 2, 5, 5, 4, 5, 7, 1, 8, 2, 4, 4, 9, 9, 5, 0, 5, 9, 3, 3, 1, 5, 0, 9, 3, 7, 7, 6, 8, 3, 8, 5, 0, 6, 8, 1, 0, 9, 7, 9, 1, 5, 6, 8, 7, 8, 5, 8, 9, 8, 7, 3, 3, 3, 0, 1, 0, 9, 0, 8, 3, 3, 8, 9, 1, 3, 9, 4, 5, 4
Offset: 0

Views

Author

Jeremy Tan, Oct 06 2020

Keywords

Comments

For every minimal surface, an associate family of minimal surfaces can be defined by adding an angle of association to the base surface's Weierstrass-Enneper parametrization.
If the base is Schwarz's D surface, an angle of association of Pi/2 yields Schwarz's P surface; this entry is the only other angle for which the resulting associate surface - the gyroid - is embedded.

Examples

			0.66348297051143480805756884743723...
In degrees: 38.0147739891080681076130861019883...
		

Crossrefs

Cf. A249282 (K(1/4)), A249283 (K(3/4)).

Programs

  • Mathematica
    First@ RealDigits@ N[ArcTan[EllipticK[1/4] / EllipticK[3/4]], 120]
  • PARI
    atan(ellK(1/2)/ellK(sqrt(3/4))) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals arctan(K(1/4) / K(3/4)), where K is the complete elliptic integral of the first kind.
Showing 1-6 of 6 results.