cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068521 Decimal expansion of agm(1, 2).

Original entry on oeis.org

1, 4, 5, 6, 7, 9, 1, 0, 3, 1, 0, 4, 6, 9, 0, 6, 8, 6, 9, 1, 8, 6, 4, 3, 2, 3, 8, 3, 2, 6, 5, 0, 8, 1, 9, 7, 4, 9, 7, 3, 8, 6, 3, 9, 4, 3, 2, 2, 1, 3, 0, 5, 5, 9, 0, 7, 9, 4, 1, 7, 2, 3, 8, 3, 2, 6, 7, 9, 2, 6, 4, 5, 4, 5, 8, 0, 2, 5, 0, 9, 0, 0, 2, 5, 7, 4, 7, 3, 7, 1, 2, 8, 1, 8, 4, 4, 8, 4, 4, 4, 3, 2, 8, 1, 8
Offset: 1

Views

Author

Benoit Cloitre, Mar 21 2002

Keywords

Comments

This is the arithmetic-geometric mean of 1 and 2, given by u(1) = 1, v(1) = 2, u(n+1) = (u(n)+v(n))/2, v(n+1) = sqrt(u(n)*v(n)); agm(1,2) = lim u(n) = lim v(n).
Schneider proved that this constant is transcendental. - Charles R Greathouse IV, Feb 03 2025

Examples

			1.45679103104690686918643238326508197497386394322130559079417238326792645458025...
		

Crossrefs

Cf. A084895 (agm(1,3)), A084896 (agm(1,4)), A084897 (agm(1,5)), A000796, A249283.

Programs

  • Maple
    evalf(GaussAGM(1, 2), 144);  # Alois P. Heinz, Jul 05 2023
    evalf(Pi/EllipticK(sqrt(3)/2), 107); # or
    evalf(3*Pi/(4*EllipticK(1/3)), 107); # Vaclav Kotesovec, Mar 28 2024
  • Mathematica
    RealDigits[ ArithmeticGeometricMean[1, 2], 10, 107] // First (* Jean-François Alcover, Feb 06 2013 *)
    RealDigits[N[3Pi/(4EllipticK[1/9]), 107]][[1]] (* Jean-François Alcover, Jun 02 2019 *)
    RealDigits[N[Pi/EllipticK[3/4], 107]][[1]] (* or *)
    RealDigits[N[Pi/(2*EllipticK[-3]), 107]][[1]] (* Vaclav Kotesovec, Mar 28 2024 *)
  • PARI
    agm(1,2) \\ Charles R Greathouse IV, Mar 03 2016

Formula

Equals Pi/EllipticK(3/4) = A000796 / A249283. - Amiram Eldar, Apr 28 2025

A249282 Decimal expansion of K(1/4), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

1, 6, 8, 5, 7, 5, 0, 3, 5, 4, 8, 1, 2, 5, 9, 6, 0, 4, 2, 8, 7, 1, 2, 0, 3, 6, 5, 7, 7, 9, 9, 0, 7, 6, 9, 8, 9, 5, 0, 0, 8, 0, 0, 8, 9, 4, 1, 4, 1, 0, 8, 9, 0, 4, 4, 1, 1, 9, 9, 4, 8, 2, 9, 7, 8, 9, 3, 4, 3, 3, 7, 0, 2, 8, 8, 2, 3, 4, 6, 7, 6, 0, 4, 0, 6, 4, 5, 0, 9, 7, 3, 9, 3, 6, 6, 1, 2, 5, 7, 0, 3, 3
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			1.685750354812596042871203657799076989500800894141089...
		

Crossrefs

Cf. A093341 (K(1/2)), A249283 (K(3/4)), A000796, A084895.

Programs

Formula

From Paul D. Hanna, Mar 25 2024: (Start)
K(1/4) = Pi/2 * Sum_{n>=0} binomial(2*n,n)^2/16^n * (1/4)^n.
K(1/4) = Pi/2 * sqrt( Sum_{n>=0} binomial(2*n,n)^3/16^n * (m*(1-m))^n ), where m = 1/4. (End)
Equals Pi/agm(1, 3) = A000796 / A084895. - Amiram Eldar, Apr 28 2025

A338004 Decimal expansion of the angle of association yielding the gyroid relative to Schwarz's D surface.

Original entry on oeis.org

6, 6, 3, 4, 8, 2, 9, 7, 0, 5, 1, 1, 4, 3, 4, 8, 0, 8, 0, 5, 7, 5, 6, 8, 8, 4, 7, 4, 3, 7, 2, 3, 9, 9, 5, 0, 0, 0, 5, 0, 4, 2, 8, 9, 8, 5, 1, 5, 6, 9, 6, 2, 5, 5, 4, 5, 7, 1, 8, 2, 4, 4, 9, 9, 5, 0, 5, 9, 3, 3, 1, 5, 0, 9, 3, 7, 7, 6, 8, 3, 8, 5, 0, 6, 8, 1, 0, 9, 7, 9, 1, 5, 6, 8, 7, 8, 5, 8, 9, 8, 7, 3, 3, 3, 0, 1, 0, 9, 0, 8, 3, 3, 8, 9, 1, 3, 9, 4, 5, 4
Offset: 0

Views

Author

Jeremy Tan, Oct 06 2020

Keywords

Comments

For every minimal surface, an associate family of minimal surfaces can be defined by adding an angle of association to the base surface's Weierstrass-Enneper parametrization.
If the base is Schwarz's D surface, an angle of association of Pi/2 yields Schwarz's P surface; this entry is the only other angle for which the resulting associate surface - the gyroid - is embedded.

Examples

			0.66348297051143480805756884743723...
In degrees: 38.0147739891080681076130861019883...
		

Crossrefs

Cf. A249282 (K(1/4)), A249283 (K(3/4)).

Programs

  • Mathematica
    First@ RealDigits@ N[ArcTan[EllipticK[1/4] / EllipticK[3/4]], 120]
  • PARI
    atan(ellK(1/2)/ellK(sqrt(3/4))) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals arctan(K(1/4) / K(3/4)), where K is the complete elliptic integral of the first kind.
Showing 1-3 of 3 results.